Scientific and technical journal

«Geology, geophysics and development of oil and gas fields»

ISSN 2413-5011

Geology, geophysics and development of oil and gas fields
3D printing capabilities to analyze artificial rock cores

UDC: 550.822.3+553.98(470.53)
DOI: 10.33285/2413-5011-2023-9(381)-19-27

Authors:

KOCHNEV ALEXANDER А.1,
OSKOLKOV ALEXANDER А.1,
KRIVOSHCHEKOV SERGEY N.1

1 Perm National Research Polytechnic University, Perm, Russia

Keywords: 3D printing, core, lithological-petrophysical properties, similarity criteria, tomography

Annotation:

Designing rational development of fields with hard-to-recover reserves requires detailed studying of rock samples that contain fluid (core). Obtaining core material is a very expensive undertaking, and each sample is essentially unique in its mineralogical, physical and chemical properties. The value of core samples is even higher in conditions of offshore field development, since, as a rule, such fields have the highest strategic potential for the development of the fuel and energy complex.

The core studying requires large-scale studies on standard, full-size samples as well as on composite core models, which with a high degree of accuracy allow simulating the natural change of reservoirs characteristics both along the geological section of the reservoir and along the radial direction. Rock samples studies are aimed at determination of reservoirs characteristics, which allow discussing the field perspectives; determining hydrophilic properties of samples, displacement coefficient and other properties, determining fluid filtration through pore channels; testing of inflow enhancement technologies, bottomhole zone treatment; testing of enhanced oil recovery (EOR) methods; testing of water shut-off technologies. A number of studies and testing of different EOR technologies cause the destruction or inability to reuse the core sample. To conduct the spectrum of all studies comparing technologies under unified conditions, the actual task is to "clone" core samples with detailed reproduction of particular sample reservoir properties.

The article analyzes the existing approaches by 3D printing of rocks, determines the basic criteria for samples similarity and selects typical objects of Perm Region deposits for the implementation of printing technologies.

Bibliography:

1. Three-dimensional printing for geoscience: Fundamental research, education and applications for the petroleum Industry / S. Ishutov, T.D. Jobe, S. Zhang [et al.] // AAPG Bulletin. – 2018. – Vol. 102. – № 1. – Pp. 1–26.

2. Almetwally A.G., Jabbari H. Experimental investigation of 3D printed rock samples replicas // Journal of Natural Gas Science and Engineering. – 2020. – Vol. 76. – Pр. 103–192. – DOI: 10.1016/j.jngse.2020.103192

3. Bacher M., Schwen A., Koestel J. Three-dimensional printing of macropore networks of an undisturbed soil sample // Vadose Zone Journal. – 2015. – Vol. 14(2). – P. 10.

4. 3D printing sandstone porosity models / S. Ishutov, F.J. Hasiuk, C. Harding, J.N. Gray // Interpretation. – 2015. – Vol. 3(3). – Pр. 49–61.

5. Visual representation and characterization of three-dimensional hydrofracturing cracks within heterogeneous rock through 3D printing and transparent models / Peng Liu, Yang Ju, Pathegama G. Ranjith [et al.] // Int. Journal of Coal Science & Technology. – 2016. – Vol. 3. – Pp. 284–294. – DOI: 10.1007/s40789-016-0145-y

6. Almetwally A.G., Jabbari H. 3D Printing Replication of Porous Media for Lab-Scale Characterization Research //ACS omega. – 2021. – Vol. 6. – № 4. – Pp. 2655–2664.

7. Zinatullina I.P., Kadyrova L.B. Litologicheskie osobennosti terrigennykh porod-kollektorov vizeyskogo yarusa dlya razrabotki zapadnogo sklona Yuzhno-Tatarskogo svoda // Dostizheniya, problemy i perspektivy razvitiya neftegazovoy otrasli: materialy Mezhdunar. nauch.-praktich. konf. – Al’met’evsk, 2018. – S. 106–112.

8. Replication of Carbonate Reservoir Pores at the Original Size Using 3D Printing / S. Ishutov, K. Hodder, R. Chalaturnyk, G. Zambrano-Narvaez // Petrophysics. – 2021. – Vol. 62. – Pр. 477–485. – DOI: 10.30632/PJV62N5-2021a3

9. Cheung C.S.N., Baud P., Wong T. Effect of grain size distribution on the development of compaction localization in porous sandstone // Geophysical Research Letters. – 2012. – Vol. 39. – № 21. – DOI: 10.1029/2012GL053739

10. Ratnikov I., Yarkova N., Romanov E. Analysis of Hydrocarbon Saturation Nature in a Heterogeneous Reservoir as Exemplified in AC10 Formation of Priobskoe Field // Mining science and technology. – 2019. – Vol. 4. – Pр. 42–56. – DOI: 10.17073/2500-0632-2019-1-42-56

11. Chilingar G.V. Relationship between porosity, permeability, and grain-size distribution of sands and sandstones // Developments in sedimentology. – Elsevier, 1964. – Vol. 1. – Pр. 71–75. – DOI: 10.1016/S0070-4571(08)70469-2

12. Valeeva S.E., Baranova A.G., Uspenskiy B.V. Vliyanie usloviy sedimentatsii na formirovanie porod-kollektorov bobrikovsko-radaevskikh otlozheniy // Uchenye zapiski Kazanskogo un-ta. Ser. Estestvennye nauki. – 2015. – T. 157. – №. 4. – S. 60–72.

13. Hodder K.J., Nychka J.A., Chalaturnyk R.J. Process limitations of 3D printing model rock // Prog. Addit. Manuf. – 2018. – Vol. 3. – Pр. 173–182. – DOI: 10.1007/s40964-018-0042-6

14. Ishutov S., Hasiuk F. 3D Printing Berea Sandstone: Testing a New Tool for Petrophysical Analysis of Reservoirs // Petrophysics. – 2017. – Vol. 58. – № 6. – Pр. 592–602.

15. Simulation and Validation of Porosity and Permeability of Synthetic and Real Rock Models Using Three-Dimensional Printing and Digital Rock Physics / I. Ezdeen, M. Jouini, F. Bouchaala, J. Gomes // ACS Omega. – 2021. – Vol. 6. – № 47. – Pр. 31775-31781. – DOI: 10.1021/acsomega.1c04429

16. Increasing Density of 3D-Printed Sandstone through Compaction / K. Hodder, A. Sanchez-Barra, S. Ishutov [et al.] // Energies. – 2022. – Vol. 15. – № 5. – P. 1813. – DOI: 10.3390/en15051813

17. Characterization and microfabrication of natural porous rocks: From micro-CT imaging and digital rock modelling to micro-3D-printed rock analogs / R. Song, Y. Wang, S. Sun, J. Liu // Journal of Petroleum Science and Engineering. – 2021. – Vol. 205. – P. 108827. – DOI: 10.1016/j.petrol.2021.108827

18. Jiang C., Zhao G.-F. A Preliminary Study of 3D Printing on Rock Mechanics // Rock Mechanics and Rock Engineering. – 2015. – Vol. 48. – Pр. 1041–1050. – DOI: 10.1007/s00603-014-0612-y

19. Kruger J., du Plessis A., van Zijl G. An investigation into the porosity of extrusion-based 3D printed concrete // Additive Manufacturing. – 2021. – Vol. 37. – P. 101740. – DOI: 10.1016/j.addma.2020.101740

20. Binder saturation as a controlling factor for porosity variation in 3D-printed sandstone / K.J. Hodder, K. Craplewe, S. Ishutov, R. Chalaturnyk // Petrophysics. – 2021. – Vol. 62. – № 5. – Pр. 450-462. – DOI: 10.30632/PJV62N5-2021a1

21. Effects of Grain Size and Layer Thickness on the Physical and Mechanical Properties of 3D Printed / Y. Wang, S. Li, R. Song [et al.] // Rock Analogs. Energies. – 2022. – Vol. 15. – P. 7641. – DOI: 10.3390/en15207641

22. A Comprehensive Experimental Study on Mechanical Behavior, Microstructure and Transport Properties of 3D printed Rock Analogs / R. Song, Y. Wang, S. Ishutov [et al.] // Rock Mechanics and Rock Engineering. – 2020. – Vol. 53. – Pр. 5745-5765. – DOI: 10.1007/s00603-020-02239-4

23. Gomez J., Zambrano-Narvaez G., Chalaturnyk R. Experimental Investigation of the Mechanical Behavior and Permeability of 3D Printed Sandstone Analogues Under Triaxial Conditions // Transport in Porous Media. – 2019. – Vol. 129. – DOI: 10.1007/s11242-018-1177-0

24. Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes / T. Ishibashi, Y. Fang, D. Elsworth [et al.] // Int. Journal Rock Mechanics & Mining Sciences. – 2020. – Vol. 128. – P. 104271. – DOI: 10.1016/j.ijrmms.2020.104271

25. Modeling rock specimens through 3D printing: Tentative experiments and prospects / Q. Jiang, X. Feng, L. Song [et al.] // Acta Mechica Sinica. – 2016. – Vol. 32. – Pp. 101–111. – DOI: 10.1007/s10409-015-0524-4

26. Wettability of porous media from environmental SEM: from model to reservoir rocks / M. Robin, R. Combes, F. Degreve, L. Cuiec // Int. Symposium on Oilfield Chemistry. – Houston, Texas, 1997. – SPE-37235-MS. – DOI: 10.2118/37235-MS

27. Cuiec L., Longeron D., Pacsirszky J. Recommendations for the determination of the wettability of a specimen of reservoir rock // Rev. Inst. Français du Pétrole. – 1978. – Vol. 33. – № 6. – Pр. 907–914.

28. Primenenie metoda rentgenovskoy tomografii pri petrofizicheskikh issledovaniyakh kerna neftyanykh i gazovykh mestorozhdeniy / S.V. Galkin, A.A. Efimov, S.N. Krivoshchekov [i dr.] // Geologiya i geofizika. – 2015. – T. 56. – № 5. – S. 995–1007. – DOI: 10.15372/GiG20150509

29. Savitskiy Ya.V. Sovremennye vozmozhnosti metoda rentgenovskoy tomografii pri issledovanii kerna neftyanykh i gazovykh mestorozhdeniy // Vestnik Permskogo nats. issled. politekhnich. un-ta. Geologiya, neftegazovoe i gornoe delo. – 2015. – № 15. – S. 28–37. – DOI: 10.15593/2224-9923/2015.15.4