Top.Mail.Ru

Scientific and technical journal

«Geology, geophysics and development of oil and gas fields»

ISSN 2413-5011

Geology, geophysics and development of oil and gas fields
Application of the method of electrical influence on aqueous solutions as a way to simulate processes, accompanying underground storage of hydrogen

UDC: 621.6.028+662.767.2
DOI: -

Authors:

SAFAROVA E.A.1,
LESIN V.I.1

1 Oil and Gas Research Institute Russian Academy of Sciences, Moscow, Russia

Keywords: exposure to electric field, aqueous solution, formation water, hydrogen, underground gas storage

Annotation:

The article describes a method of modelling of physico-chemical processes in aqueous solutions initiated by hydrogen injection. In order to create thermobaric parameters, the approach used was to substitute the pressure of the gas by creating an electric field in the aqueous solution. The choice of an electric field as a natural influence on the liquid phase is based on the linear dependence of the liquid flow potential through porous media on the pressure gradient.
The work experimentally investigated changes in concentrations of hydrogen ions (pH) and redox potential (Eh) of formation waters under the action of electric fields, proportional to the pressure of gas in underground storage. Reservoir water from the Shchigrovskiy horizon of the Shchelkovskiy underground gas storage facility was used as a model solution.
It has been established experimentally that the effect of the electric field initiates the processes of growth of the reduction ability of the investigated fluid, which is expressed in the reduction of Eh to negative values, the processes of growth ph, the fall into the solid phase of particles, containing iron oxides and dissolved salts in water.
The conducted studies substantiate the use of electric fields for modelling the processes accompanying the operation of underground hydrogen storage, located in aquifers.

Bibliography:

1. O voprosakh ekspluatatsii tsifrovykh sistem upravleniya na ob"ektakh gazotransportnoy sistemy / N.A. Eremin, V.E. Stolyarov, E.A. Safarova, S.I. Gavrilenko // Avtomatizatsiya i informatizatsiya TEK. – 2022. – № 6(587). – S. 14–23. – DOI: 10.33285/2782-604X-2022-6(587)-14-23

2. Roldugin V.I. Fizikokhimiya poverkhnosti. – Dolgoprudnyy: Intellekt, 2011. – 568 s.

3. Lorne B., Perrier F., Avouac J.-Ph. Streaming potential measurements: 2. Relationship between electric and hydraulic flow patterns from rock samples during deformation // Journal of Geophysical Research. – 1999. – Vol. 104. – № B8. – Pp. 17879–17896. – DOI: 10.1029/1999JB900155

4. Lesin V.I. Vozniknovenie voln plotnosti elektricheskikh zaryadov pri techenii zhidkikh kolloidnykh rastvorov // Neft. khoz-vo. – 2005. – № 4. – S. 37–39.

5. Shafarets B.P. Realizatsiya priemnoy antenny na mekhanizme elektrokineticheskogo yavleniya "potentsial techeniya". – SPb.: Nauchnoe priborostroenie, 2019. – T. 29. – № 2. – S. 103–108.

6. Abukova L.A., Abramova O.P. Prognoz gidrogeokhimicheskikh effektov v glinistykh flyuidouporakh pri podzemnom khranenii vodoroda s metanom // Georesursy. – 2021. – T. 23. – № 1. – S. 118–126. – DOI: 10.18599/grs.2021.1.13

7. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II) / J. Wu, X. Wang, Zh. Lou [et al.] // Chemical Society Reviews. – 2019. – Vol. 48. – № 4. – Pp. 1004–1076. – DOI: 10.1039/C8CS00457A

8. Safarova E.A. Otsenka vliyaniya elektrokhimicheskikh yavleniy, privodyashchikh k poteryam zakachivaemogo vodoroda na PKhG // SOCAR Proceedings Special. – 2023. – № 2. – Pp. 79–81. – DOI: 10.5510/OGP2023SI200894

9. Gidrokhimicheskie i mikrobiologicheskie protsessy, soprovozhdayushchie gibridnoe khranenie vodoroda i metana v vodonosnykh gorizontakh / L.A. Abukova, E.A. Safarova, D.S. Filippova [i dr.] // Aktual’nye problemy nefti i gaza. – 2023. – Vyp. 3(42). – DOI: 10.29222/ipng.2078-5712.2023-42.art14

10. Sonntag R.C., Russel W.B. Structure and breakup of flocs subjected to fluid stresses: I. Shear experiments // Journal of Colloid and Interface Science. – 1986. – № 113(2). – Pp. 399–413. – DOI: 10.1016/0021-9797(86)90175-X

11. Hydrogenization of underground storage of natural gas/ B. Hagemann, M. Rasoulzadeh, M. Panfilov, L. Ganzer // Computational Geoscience. – 2015. – DOI: 10.1007/s10596-015-951-6

12. Vasatova P., Pivokonsky M., Filip P. Effect of share rate on aggregate size and structure in the process of aggregation and at steady state // Powder Technology. – 2013. – Vol. 235(2). – Pp. 540–549. – DOI:10.1016/j.powtec.2012.11.014