Scientific and technical journal

«Geology, geophysics and development of oil and gas fields»

ISSN 2413-5011

Geology, geophysics and development of oil and gas fields
Determination of the space resolution of fiber-optic distributed temperature sensors, integrated into geophysical cables

UDC: 550.832
DOI: -

Authors:

KHALILOV DAMIR G.1,
SAVICH ANATOLIY D.2,
SALNIKOVA OLGA L.1,
KOSTITSYN VLADIMIR I.2,
CHERNYKH IRINA A.3,
CHERNYKH VASILIY I.4

1 Permneftegeofizika PJSC, Perm, Russia
2 Perm State National Research University, Perm, Russia
3 LUKOIL-PERM LLC, Perm, Russia
4 Perm National Research Polytechnic University, Perm, Russia

Keywords: geophysical cable, optical fiber, space resolution, well, thermal-physical properties

Annotation:

The possibilities of geophysical fiber-optic thermometry systems used for monitoring of work of oil wells and downhole equipment, as well as their specifics related to the peculiarities of temperature measurements, are considered. Based on the analysis of measurement results in the process of a long-term monitoring of work of a horizontal well equipped by circulation valves, as well as a number of directional wells, the possibilities in terms of spatial detailing of the fiber-optic cables used have been determined. The minimum dimensions of the objects that have been localized do not exceed 0,5 m. It is noted that they can be components of technological equipment for fluid extraction, breakdown of cement stone consistence as well as leaks of casing and tubing, contributing to the occurrence of behind-the-column circulation and product flooding. In order to reliably predict the information content of fiber-optic distributed temperature sensors, located in the composition of geophysical cables, with a large number of their samples of various designs, experimental studies were conducted to assess the effectiveness of the existing criteria used for spatial resolution determination. The obtained results confirmed the unsuitability of the applied criteria for the field of geophysical researches, lying in the absence of correlation between the design features of cable products and resolution values. The criterion, developed and tested by the authors of the article, and the accompanying methodological approach are the most suitable for assessing the resolution of geophysical fiber-optic systems, since they are in good agreement with the results of production studies and, as a result, open up the possibility of using a theoretical method for determining nominal resolution values for cables of any design.

Bibliography:

1. Statsionarnyy monitoring geofizicheskikh parametrov pri kontrole razrabotki mestorozhdeniy. Vozmozhnosti, problemy i perspektivy ispol’zovaniya / A.I. Ipatov, M.I. Kremenetskiy, I.S. Kaeshkov, A.V. Buyanov // Aktual’nye problemy nefti i gaza. – 2018. – № 2(21). – S. 12–14. – DOI: 10.29222/ipng.2078-5712.2018-21.art12

2. Kremenetskiy M.I., Ipatov A.I. Primenenie promyslovo-geofizicheskogo kontrolya dlya optimizatsii razrabotki nefti i gaza. T. 2. Rol’ gidrodinamiko-geofizicheskogo monitoringa v upravlenii razrabotkoy. – Izhevsk: ANO "Izhevskiy institut komp’yuternykh issledovaniy", 2020. – S. 444–510.

3. Primenenie optovolokonnykh sistem pri realizatsii kompleksnykh tekhnologiy zakanchivaniya i dolgovremennogo monitoringa raboty skvazhin / A.P. Laptev, A.D. Savich, V.I. Kostitsyn [i dr.] // Neft. khoz-vo. – 2022. – № 8. – S. 94–99. – DOI: 10.24887/0028-2448-2022-8-94-99

4. Fizika. Optika: ucheb. posobie v 2 ch.: Ch. 2. Volnovaya optika / A.V. Paramonov, L.V. Nikol’skaya, I.A. Klepinina, A.V. Ermolov. – Tula: Izd-vo Tul’skogo gos. pedagogich. un-ta im. L.N. Tolstogo, 2013. – 109 s.

5. Stend dlya kalibrovki raspredelennykh optovolokonnykh sistem kontrolya temperatury v polevykh usloviyakh / A.S. Petukhov, P.S. Lagunov, A.N. Nikonov, V.I. Luppov // Karotazhnik. – Tver’: Izd-vo AIS, 2019. – № 5(299). – S. 106–119.

6. Skryabin V.I. Kurs lektsiy po teplotekhnike. – Orel: OrelGTU, 2000. – 82 s.

7. Khalilov D.G., Savich A.D., Denisov A.M. Izuchenie teplovoy inertsii geofizicheskikh kabeley. Opredelenie postoyannoy vremeni nagreva optovolokonnykh raspredelennykh datchikov temperatury // Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. – 2023. – № 7(379). – S. 27–36. – DOI: 10.33285/2413-5011-2023-7(379)-27-36

8. Smolen J.J., Alex van der Spek. Distributed temperature sensing // A-DTS primer for oil & gas production. Shell Inter. Exploration and Production. – Netherlands, Hague, 2003. – 97 p.

9. Distributed strain and temperature sensing over 50 km of SMF with 1 m spatial resolution employing BOTDA and optical pulse coding / M.A. Soto, G. Bolognini, F. Di Pasquale, L. Thẻvenaz // 2nd International conference on optical fiber sensors. – 2009. – Pp. 750383-4. – DOI: 10.1117/12.848791

10. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range / M.A. Soto, G. Bolognini, F. Di Pasquale, L. Thẻvenaz // Optics letters. – 2010. – № 2. – Pp. 259–261. – DOI: 10.1364/OL.35.000259

11. Distributed Temperature Sensing – ULTIMA™ DTS. – 2023. – URL: https://silixa.com/technology/ultima-dts/ (data obrashcheniya: 10.11.23).