Top.Mail.Ru

Scientific and technical journal

«Geology, geophysics and development of oil and gas fields»

ISSN 2413-5011

Geology, geophysics and development of oil and gas fields
Some specific features of interpreting well testing data of complexly-composed reservoirs without wells stopping – the method of well testing with variable flow rate and its competitors

UDC: 622.276.031:532.546
DOI: -

Authors:

DIEVA N.N.1,
AFANASKIN I.V.2,
ROSHCHIN E.A.1,
ARKHIPOV A.I.1,
PIVOVAROV D.E.1

1 National University of Oil and Gas "Gubkin University", Moscow, Russia
2 Euroasian Union of Subsoil Use Experts, Moscow, Russia

Keywords: wells hydrodynamic testing without stopping production, complexly-composed reservoir, testing of wells with variable flow rate, deconvolution, production analysis

Annotation:

The authors of the article consider modern methods of wells testing in complexly-composed reservoirs, carried out without stopping production. The main attention is paid to the methods with variable flow rates, deconvolution, production analysis and other approaches, aimed at determining reservoirs characteristics, assessing the influence of reservoir boundaries and wells interference. The conducted comparative analysis showed that the variable flow rate method is highly accurate and adaptable for working in heterogeneous reservoirs, thus allowing effectively assessing the key reservoir parameters without interrupting production.

The strengths and weaknesses of each method, their applicability depending on the geological structure are described as well as promising areas for future research are proposed, including the improvement of mathematical models and the integration of machine learning methods. The results of the work are important for improving the accuracy of wells testing data interpretation and increasing the efficiency of oil fields development with complex geological structure.

Bibliography:

1. Robert Erlager (ml.). Gidrodinamicheskie metody issledovaniya skvazhin. – M.–Izhevsk: Institut komp’yuternykh issledovaniy, 2007. – 512 s.

2. Dynamic Data Analysis V. 5.60. / O. Houze, D.Viturat, O.S. Fjaere [et al.]. – Kappa Engineering, 2024. – 788 p.

3. Afanaskin I.V., Kolevatov A.A., Glushakov A.A. Matematicheskaya model’ dlya interpretatsii rezul’tatov gidrodinamicheskikh issledovaniy skvazhin, rabotayushchikh s peremennym debitom v odnorodnom beskonechnom plaste // Neft. khoz-vo. – 2023. – № 4. – S. 52–55. – DOI: 10.24887/0028-2448-2023-4-52-55

4. Afanaskin I.V., Kolevatov A.A., Glushakov A.A. Matematicheskie modeli dlya interpretatsii gidrodinamicheskikh issledovaniy skvazhin s peremennym debitom v plaste s pryamolineynoy nepronitsaemoy granitsey i v plaste s dvumya parallel’nymi nepronitsaemymi granitsami // Neftepromyslovoe delo. – 2023. – № 8(656). – S. 12–17. – DOI: 10.33285/0207-2351-2023-8(656)-12-17

5. Matematicheskaya model’ dlya interpretatsii gidrodinamicheskikh issledovaniy skvazhin s peremennym debitom v polubeskonechnoy polose / A.A. Glushakov, D.E. Pivovarov, I.V. Afanaskin, A.A. Kolevatov // Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. – 2024. – № 8(392). – S. 34–42.

6. Modeli zamknutogo pryamougol’nogo plasta i beskonechnogo plasta s dvoynoy poristost’yu ili pronitsaemost’yu dlya interpretatsii gidrodinamicheskikh issledovaniy skvazhin, rabotayushchikh s peremennym debitom / N.N. Dieva, M.N. Kravchenko, I.V. Afanaskin [i dr.] // Neft. khoz-vo. – 2025. – № 1.

7. Russell D.G. Determination of Formation Characteristics from Two Rate Flow Tests // Journal of Pet. Tech. – December 1963. – Pp. 1347–1355.

8. Sova E.V., Sova V.E. Effektivnost’ primeneniya metodiki issledovaniya na dvukh debitakh dlya sokrashcheniya zatrat na provedenie gidrodinamicheskikh issledovaniy ekspluatatsionnykh skvazhin // Geologiya, geografiya i global’naya energiya. – 2009. – № 2(33). – S. 76–79.

9. Izuchenie svoystv neftyanykh plastov s pomoshch’yu gidrodinamicheskikh issledovaniy skvazhin metodom dvukh rezhimov – teoriya, modelirovanie i praktika / I.V. Afanaskin, P.V. Kryganov, S.G. Vol’pin [i dr.] // Vestnik kibernetiki. – 2015. – № 3(19). – S. 94–116.

10. Gidrodinamicheskie issledovaniya skvazhin putem ikh puska posle kratkovremennoy ostanovki / S.G. Vol’pin, I.V. Afanaskin, P.V. Kryganov, A.A. Glushakov // Neftepromyslovoe delo. – 2020. – № 11(623). – S. 41–54. – DOI: 10.30713/0207-2351-2020-11(623)-41-54

11. Gringarten A.C. Deconvolution of Well-Test Data as a Nonlinear Total Least-Squares Problem // SPE 77688. – 2004. – 16 p.

12. Levitan M.M. Practical Application of Pressure-Rate Deconvolution to Analysis of Real Well Tests // SPE 84290. – 2003. – 12 p.

13. Multiwell Deconvolution / J.A. Cumming, D.A. Wooff, T. Whittle, A.C. Gringarten // SPE Reservoir Evaluation and Engineering. – November 2014. – Рp. 457–465.

14. Zheng Shi-Yi, Wang Fei. Multi-Well Deconvolution Algorithm for the Diagnostic, Analysis of Transient Pressure with Interference from Permanent Down-hole Gauges // SPE 121949. – 2009. – 15 p.

15. Gulyaev D.N., Batmanova O.V. Impul’sno-kodovoe gidroproslushivanie i algoritmy mul’tiskvazhinnoy dekonvolyutsii – novye tekhnologii opredeleniya svoystv plastov v mezhskvazhinnom prostranstve // Vestnik Rossiyskogo novogo un-ta. Ser. Slozhnye sistemy: modeli, analiz, upravlenie. – 2017. – № 4. – S. 26–32.

16. Kremenetskiy M.I., Ipatov A.I., Gulyaev D.N. Informatsionnoe obespechenie i tekhnologii gidrodinamicheskogo modelirovaniya neftyanykh i gazovykh zalezhey. – M.–Izhevsk: Institut komp’yuternykh issledovaniy, 2012. – 869 s.

17. Arps J.J. Analysis of Decline Curve // Trans. AIME – 1945. – № 160. – Pр. 228–247. – DOI: 10.2118/945228-g

18. Blassingame T.A., Johnston J.L., Lee W.J. Type Curve Analysis Using the Pressure Integral Method // SPE 18799, presented at the SPE California Regional Meeting. – Bakers Field, 5-7 April 1989.

19. Decline Curve Analysis Using Material Balance Tame / L.E. Doublet, P.K. Pande, T.J. McCollum, T.A. Blassingame // SPE 28688. – October 1994. – Pp. 1–23.

20. Fetkovich M.J. Decline Curve Analysis Using Type Curves // SPE 4629. – 1980.