Scientific and technical journal

«Oilfield engineering»

ISSN 0207-2351

Oilfield engineering
REVIEW OF APPROACHES TO VIRTUAL FLOWMETER ALGORITHM IMPLEMENTATION IN WELLS, EQUIPPED BY ELECTRIC SUBMERSIBLE PUMPS

UDC: 622.276.53.054.23:621.67-83
DOI: 10.33285/0207-2351-2022-1(637)-33-41

Authors:

SHABONAS ARTURAS R.1,
GORIDKO KIRILL A.1,2

1 National University of Oil and Gas "Gubkin University", Moscow, Russia
2 Gazpromneft-Khantos, Khanty-Mansiysk, Russia

Keywords: electric submersible pump, gas-liquid mixture, virtual flowmeter, literature review

Annotation:

Electric submersible pumping (ESP) units are the main technique of oil production in Russia now. ESP is often used as a digitalization platform for wells and production management. A large amount of information, both high-frequency operating parameters and integral ones, are collected on ESP operation. The data, recorded during the well operation with ESP, can be used not only for equipment diagnostics, but also for obtaining additional information about the operation of the entire production system – reservoir – well – ESP – tubing – gathering system. One of the ways of this information usefulness can be through solving the virtual flowmetry problem, which provides timely determination of the flow rate and information acquisition and anomalies identification in well's performance. At the same time ESP often pumps fluid with a free gas content, which is a complicating factor and can significantly impact its pressure-flow characteristic. The article summarized experience of using ESP models for predicting fluid flow rates to solve the problem of virtual flowmetry.

Bibliography:

1. Izmeneniye № 1 GOST R 8.615–2005. Gosudarstvennaya sistema obespecheniya edinstva izmereniy. Izmereniya kolichestva izvlekayemoy iz nedr nefti i neftyanogo gaza. Obshchiye metrologicheskiye i tekhnicheskiye trebovaniya. – M., 2009.
2. Virtual’naya raskhodometriya kak instrument monitoringa effektivnosti raboty skvazhiny s UETsN / A.M. Andrianova, A.A. Loginov, R.A. Khabibullin, O.S. Kobzar’ // PRONEFT’. Professional’no o nefti. – 2020. – № 4(18). – S. 75–80. – DOI: https://doi.org/10.7868/S2587739920040114
3. Brill D.P., Brill Dzh.P., Mukerdzhi Kh. Mnogofaznyy potok v skvazhinakh: per. s angl. Yu.V. Russkikh; pod red. M.N. Kravchenko. – Izhevsk: In-t komp’yuternykh issled., 2006. – 384 s.
4. Gorid’ko K.A. Stend issledovaniy dispersnosti gazovoy fazy v potoke gazozhidkostnoy smesi po dline elektrotsentrobezhnogo nasosa // Ekspozitsiya Neft’ Gaz. – 2020. – № 6. – S. 62–66. – DOI: https://doi.org/10.24411/2076-6785-2020-10106
5. Drozdov A.N. Tekhnologiya i tekhnika dobychi nefti pogruzhnymi nasosami v oslozhnennykh usloviyakh: ucheb. posobiye dlya vuzov. – M.: RGU nefti i gaza im. I.M. Gubkina. – M.: MAKS Press, 2008. – 309 s.
6. Ermolkin O.V. Izmereniye i kontrol’ tekhnologicheskikh protsessov: konspekt lektsiy. – М.: RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2016.
7. Avtomatizatsiya sbora i podgotovki dannykh (V)TMS dlya provedeniya gidrodinamicheskikh issledovaniy skvazhin s ispol’zovaniyem "virtual’nogo raskhodomera" / A.A. Pashali, M.A. Aleksandrov, A.G. Kliment’yev [i dr.] // Neft. khoz-vo. – 2016. – № 11. – S. 60–63.
8. Pashali A.A., Topol’nikov A.S., Mikhaylov V.G. Vosstanovleniye debita na osnove algoritmov "virtual’nogo raskhodomera" dlya provedeniya gidrodinamicheskikh issledovaniy skvazhin // Neft. khoz-vo. – 2017. – № 11. – S. 63–67. – DOI: https://doi.org/10.24887/0028-2448-2017-11-63-67
9. Pashali A.A., Mikhaylov V.G. Ispol’zovaniye algoritma "virtual’nogo raskhodomera" pri vyvode neftyanykh skvazhin na rezhim // Neft. khoz-vo. – 2020. – № 10. – S. 82–85. – DOI: https://doi.org/10.24887/0028-2448-2020-10-82-85
10. Razrabotka i vnedreniye virtual’nogo raskhodomera dlya skvazhin, oborudovannykh ustanovkami tsentrobezhnykh nasosov / V.N. Ivanovskiy, A.A. Sabirov, I.N. Gerasimov [i dr.] // Territoriya Neftegaz. – 2016. – № 11. – S. 115–120.
11. Minigazimov M.G., Sharipov A.G. Issledovaniye vliyaniya gaza na rabotu pogruzhnogo tsentrobezhnogo nasosa ETsN5-80-800 // Neftepromyslovoye delo. –1968. – № 7. – S. 34–38.
12. Intellektualizatsiya skvazhin, osnashchennykh ustanovkami elektrotsentrobezhnykh nasosov / S.S. Ul’yanov, R.I. Sagyndykov, D.S. Davydov [i dr.] // Neft. khoz-vo. – 2018. – № 10. – S. 130–133. – DOI: https://doi.org/10.24887/0028-2448-2018-10-130-133
13. Shayakberov V.F. Sovershenstvovaniye tekhnologii poskvazhinnogo kontrolya i ucheta dobychi produktsii // Elektronnyy nauchnyy zhurnal Neftegazovoye delo. – 2012. – № 3. – S. 4–15.
14. Bikmukhametov T., Jäschke J. First Principles and Machine Learning Virtual Flow Metering: A Literature Review // J. of Petroleum Science and Engineering. – Vol. 184. – DOI: https://doi.org/10.1016/j.petrol.2019.106487
15. Bratland О. Pipe Flow 2. Multiphase flow assurance. – 2013. – URL: http://www.drbratland.com/
16. Camilleri L.,Wentao Z. Obtaining Real–Time Flow Rate, Water Cut, and Reservoir Diagnostics from ESP Gauge Data // Paper presented at the SPE Offshore Europe Oil and Gas Conference and Exhibition, Aberdeen, UK, September 2011. – DOI: https://doi.org/10.2118/145542-MS
17. Converting ESP Real–Time Data to Flow Rate and Reservoir Information for a Remote Oil Well / L. Camilleri, M.El. Gindy, A. Rusakov, S. Adoghe // Paper presented at the SPE Middle East Intelligent Oil and Gas Conference and Exhibition, Abu Dhabi, UAE, September 2015. – DOI: https://doi.org/10.2118/176780-MS
18. Camilleri L., El Gindy M., Rusakov A. Providing accurate ESP flow rate measurement in the absence of a test separator // Proceedings – SPE Annual Technical Conference and Exhibition. – 2016. – DOI: https://doi.org/10.2118/181663-MS
19. Increasing Production With High–Frequency and High–Resolution Flow Rate Measurements from ESPs / L. Camilleri, М. El Gindy, A. Rusakov [et al.] // Paper presented at the SPE Electric Submersible Pump Symposium, The Woodlands, Texas, USA, April 2017. – DOI: https://doi.org/10.2118/185144-MS
20. Increasing production with high-frequency and high-resolution flow rate measurements from ESPs / L. Camilleri, M. El Gindy, A. Rusakov [et al.] // Society of Petroleum Engineers – SPE Electric Submersible Pump Symposium. – 2017. – P. 49. – DOI: https://doi.org/10.15530/urtec-2020-2790
21. Camilleri L. Free gas and ESP; Case studies illustrating the difference between flowrate oscillations, gas locking and instability // Proceedings – SPE Annual Technical Conference and Exhibition. – 2020. – DOI: https://doi.org/10.2118/201476-MS
22. Virtual metering system for oil and gas field monitoring based on a differential pressure flowmeter / E.F. Da Paz, J.L. Baliño, I. Slobodcicov, D.F. Filho // Proceedings – SPE Annual Technical Conference and Exhibition. – 2010. – P. 1431. – DOI: https://doi.org/10.2118/133895-MS
23. Smart metering: An online application of data validation and reconciliation approach / M. Haouche, A. Tessier, Y. Deffous [et al.] // Society of Petroleum Engineers – SPE Intelligent Energy International. – 2012. – P. 215. – DOI: https://doi.org/10.2118/149908-MS
24. Virtual flow meter pilot: Based on data validation and reconciliation approach / M. Haouche, A. Tessier, Y. Deffous, J. Authier // SPE Production and Operations Symposium, Proceedings. – 2012. – P. 1071. – DOI: https://doi.org/10.2118/157283-MS
25. Efficiency analysis of ESP lifted wells in the context of virtual flow metering / I. Krylov, S. Budennyy, R. Khabibullin [et al.] // Society of Petroleum Engineers – SPE Russian Petroleum Technology Conference 2019, RPTC 2019. – DOI: https://doi.org/10.2118/196817-MS
26. Study of an Electrical Submersible Pump (ESP) as flow meter / M.P. Varón, J.L. Biazussi, A.C. Bannwart [et al.] // Society of Petroleum Engineers – 2013 SPE Artificial Lift Conference – Americas: Artificial Lift: Where Do We Go From Here. – 2013. – P. 465. – DOI: https://doi.org/10.2118/165065-MS