Scientific and technical journal

«Oilfield engineering»

ISSN 0207-2351

Oilfield engineering
Intensification of formation fluid flow in the bottom zone by the method of the wave field impact on the productive formation using the principle of its interference

UDC: 622.276.6
DOI: 10.33285/0207-2351-2022-2(638)-37-42

Authors:

GALIMZYANOVA ALIYA R.1,
SHESTERNIN VALENTIN V.1,
BUTORIN EDUARD A.1

1 Institute of Power Engineering and Advanced Technologies FRC Kazan Scientific Center Russian Academy of Sciences, Kazan, Russia

Keywords: oscillator, well, oil reservoir, working agent, pressure amplitude, vibration frequency, wave field, wave interference

Annotation:

Simultaneous processing of a number of wells that have opened a single productive layer of the well zone in order to create a hydrodynamic connection between the injection well and the producing ones is difficult. These difficulties can be overcome by the technology of a real impact on the formation by wave processes. The article discusses one of the options for the technology of a real impact on a productive oil reservoir based on the formation of an interference wave field from the exit of an injection well. In this case, the amplification of the amplitude of the generated pressure fluctuations in the injected fluid (for example, water, chemical solution, etc.) into the formation is ensured by the imposition of propagated coherent waves at the output of a low-frequency emitter, developed (received a patent) at the institute. Analytical dependences of the main characteristics of the formation of an interference wave field behind the emitter of pressure oscillations are presented. The effectiveness of the proposed technology is largely determined by the propagation of the wave field from the source to the productive zone. In this regard, predicting the characteristics of the field in this zone, as well as the choice of the power of the emitter of pressure fluctuations will be of top priority in the complex of issues of ensuring the effectiveness of the combined impact on the oil reservoir. The involvement in the development of high-viscosity and hard-to-recover reserves (accounting for about 60 % of the total volume) of hydrocarbon raw materials today is associated with significant material and energy costs. The subsequent solution of the expected efficiency of the technology based on the interference wave field will be presented using a number of physical parameters, such as porosity, reservoir permeability, elastic properties of the material and saturating fluid, its viscosity, etc. 

Bibliography:

1. Ganiev R.F., Ukrainskiy L.E., Ganiev O.R. Rezonansnye fil'tratsionnye potoki v poristoy srede, nasyshchennoy zhidkost'yu // Dokl. Akademii nauk Rossii. – 2007. – T. 412, № 1. – S. 48–51.

2. Alekseev A.S. Vek innovatsiy // EKO. – 2004. – № 1. –
S. 51–55.

3. Cheremisin N.A., Cheremisin A.N. Proektirovanie neobkhodimogo spektra chastot i optimal'noy intensivnosti volnovykh vozdeystviy na plasty // Neft. khoz-vo. – 2007. – № 6. – S. 61–65.

4. Intensifikatsiya dobychi nefti nizkochastotnym akusticheskim vozdeystviem / V.N. Bogolyubov, V.N. Lobanov, L.S. Brilliant [i dr.] // Neft. khoz-vo. – 2000. – № 9. – S. 80–81.

5. Analiz effektivnosti termovolnovogo vozdeystviya na Mordovo-Karmal'skom mestorozhdenii / R.Kh. Muslimov, Yu.V. Volkov, A.Ya. Khavkin [i dr.] // Burenie i neft'. – 2003. – № 1. –
S. 18–23.

6. Kuznetsov O.L., Simkin E.M., Chilingar Dzh. Fizicheskie osnovy vibratsionnogo i akusticheskogo vozdeystviy na neftegazovye plasty. – M.: Mir, 2001. – 260 s.

7. Self oscillation phenomena of turbulent jets in a channel
/ Kazuhiro Murai, Yosure Kawashima, Shigeyasu Nakanishi, Masao Taga // The Canadian J. of chemical engineering. – 1989. – Vol. 57. – P. 906–911.

8. Sawyer W.A. The flow due to a two-dimensional jet issuing parallel to a flat plate // J. Fluid Mechanics. – 1961. – № 9. – P. 543–560.

9. Butorin E.A., Zagidullina A.R., Kravtsov Ya.I. Vybor gidrodinamicheskogo izluchatelya kolebaniy davleniya dlya sovmeshchennogo vozdeystviya na plast // Neft. khoz-vo. – 2010. – № 8. – S. 120–123.

10. Galitseyskiy B.M., Ryzhov Yu.A., Yakush E.V. Teplovye i gidrodinamicheskie protsessy v koleblyushchikhsya potokakh. – M.: Mashinostroenie, 1977. – 256 s.

11. Skuchik E. Osnovy akustiki / per. s angl. – M.: Mir, 1976. – T. 2 . – 544 s.

12. Vinogradova M.B., Rudenko O.V., Sukhorukov A.P. Teoriya voln. – M.: Nauka, 1990. – 432 s.

13. Yavorskiy B.M., Detlaf A.A., Lebedev A.K. Spravochnik po fizike dlya inzhenerov i studentov vuzov. 8-e izd., pererab. i ispr. – M.: ONIKS: Mir i Obrazovanie, 2006. – 1056 s.

14. Mandel'shtam L.I. Polnoe sobranie trudov: Akademiya nauk SSSR. – 1955. – T. IV. – 512 s.