Top.Mail.Ru

Scientific and technical journal

«Oilfield engineering»

ISSN 0207-2351

Positional coding of multi-stage hydraulic fracturing (MSHF) ports for accurate identification of working cracks that appeared in the cource of a formation hydraulic fracturing based on the results of data interpretation of hydrodynamic studies of MSHF wells

UDC: 622.276.66.004.58
DOI: -

Authors:

CHAMEEV IGOR L.1,
VOYVODYANU ARTEM V.2,
KOVALENKO IGOR V.1,
ZYKOV ALEXEY S.1,
SHENGELIYA DAVID YU.3,
VIRT VITALY I.2

1 Gazpromneft STC, Tyumen, Russia
2 Gazpromneft-Yamal, Tyumen, Russia
3 University of Tyumen, Tyumen, Russia

Keywords: oil and gas fields development, oil rim, multi-stage hydraulic fracturing of a formation, hydrodynamic studies, hard-to-recover reserves, complex reservoir development, gas re-injection into the gas cap, ports position coding

Annotation:

The authors of the article propose a method for digital identification of active fractures of multi-stage hydraulic fracturing (MSHF) based on algorithmic analysis of hydrodynamic data and positional coding of ports, which allows for accurate identification of the numbers of active MSHF cracks. The method is based on designing unique distances between ports when lowering the MSHF assembly in combination with analysis of wellbore hydrodynamic research data and allows for accurate determination of the number and spatial location of active cracks. The developed algorithm, integrating analytical solutions and machine learning, allows for high accuracy (~95 %) of identifying active fractures, reducing diagnostic costs by 3...5 times compared with traditional methods. The simulation results and field tests confirm the effectiveness of the approach for optimizing control over the development of complexly-composed reservoirs.

Bibliography:

1. Kovalenko I.V. Invariant svyazi fil’tratsionnykh i emkostnykh parametrov na neustanovivshemsya rezhime fil’tratsii k skvazhinam s mnogostadiynym gidrorazryvom plasta kak instrument interpretatsii dannykh gidrodinamicheskikh issledovaniy // Neftepromyslovoe delo. – 2022. – № 8(644). – S. 13–20. – DOI: 10.33285/0207-2351-2022-8(644)-13-20

2. Kovalenko I.V. Gidrodinamicheskoe modelirovanie gorizontal’nykh skvazhin s mnogostadiynym gidrorazryvom plasta s uchetom poter’ davleniy na konvergentsiyu liniy toka // Neftepromyslovoe delo. – 2023. – № 2(650). – S. 26–28. – DOI: 10.33285/0207-2351-2023-2(650)-26-28

3. Kovalenko I.V. Ustanovivshiysya debit gorizontal’noy skvazhiny s mnogostadiynym gidrorazryvom plasta // Neftepromyslovoe delo. – 2022. – № 10(646). – S. 62–65. – DOI: 10.33285/0207-2351-2022-10(646)-62-65

4. Cinco-Ley H., Samaniego-V.F. Transient pressure analysis for fractured wells // SPE J. of Petroleum Technology. – 1981. – Vol. 33(9). – DOI: 10.2118/7490-pa

5. Economides M.J., Nolte K.G. Reservoir Stimulation. – Wiley, 2000. – 856 p.

6. Post-Frac Performance Analysis in Multi-Stage Wells / R. Smith [et al.] // SPE J. – 2020.

7. Gupta A. Economic Impact of Fracture Diagnostics // Energy Economics. – 2019. – Vol. 45(3).