Methodology for combining heavy hydrocarbons into a pseudo-component based on the estimation of the distribution coefficient error
UDC: 622.279.031:53
DOI: -
Authors:
GUSAKOV GLEB K.
1,
GIL'MANOV ALEXANDER YA.
1,
SHEVELEV ALEXANDER P.
1
1 University of Tyumen, Tumen, Russia
Keywords: PVT-model, phase equilibrium, reservoir hydrocarbon systems, mathematical modeling, gas condensate fields
Annotation:
Regulation of the process of gas condensate field development is impossible without predicting the phase behavior of hydrocarbons. In the engineering practice the main direction to solving this problem is the use of hydrodynamic simulators, but a large number of hydrocarbon components unreasonably increases the calculation time. In the course of the work, an algorithm for calculating the vapor-liquid equilibrium of a complex hydrocarbon system with the unification of a group of heavy hydrocarbons into one pseudo-component was implemented. The validation of the developed methodology was carried out by comparing the calculated data with laboratory experiments results as well as its verification by comparing the results of calculation of the dynamics of the hydrocarbon system phase behavior based on the proposed methodology with already known methods of combining heavy fractions into a pseudo-component. It resulted in revealing the fact that the algorithm based on the assessment of the distribution coefficient error has an optimal balance between the number of components and the reproducibility of laboratory research results. Within the framework of the developed method, a physically justified algorithm for determining the hydrocarbon number, starting from which it is possible to carry out unification into a pseudo-component, is proposed. The application of the proposed method allowed revealing that the number of the initial unified component is affected not only by the composition, but also by the thermobaric conditions.
Bibliography:
1. Yushchenko T.S., Brusilovskiy A.I. Poetapnyy podkhod k sozdaniyu i adaptatsii PVT-modeley plastovykh uglevodorodnykh sistem na osnove uravneniya sostoyaniya // Georesursy. – 2022. – T. 24, № 3. – S. 164–181. – URL: https://doi.org/10.18599/grs.2022.3.14
2. Litvintseva E.V., Sannikov I.N. Metodicheskie aspekty podgotovki kompozitsionnoy modeli flyuidov pri sovmestnom osvoenii ob"ektov gazokondensatnykh mestorozhdeniy // Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. – 2023. – № 4(376). – S. 54–58. – DOI: 10.33285/2413-5011-2023-4(376)-54-58
3. Tomchik P.I. Matematicheskoe modelirovanie fazovogo sostoyaniya prirodnykh uglevodorodnykh sistem // European research: sb. st. XXXI Mezhdunar.nauch.-prakt. konf. – Penza, 2021. – S. 15–19.
4. Yushchenko T.S., Brusilovskiy A.I. Metodika sozdaniya adekvatnoy PVT-modeli prirodnoy gazokondensatnoy smesi // Gazovaya prom-st’. – 2015.– № 1(717). – S. 46–50.
5. Falovskiy V.I., Khoroshev A.S., Shakhov V.G. Sovremennyy podkhod k modelirovaniyu fazovykh prevrashcheniy uglevodorodnykh sistem s pomoshch’yu uravneniya sostoyaniya Penga – Robinsona // Izv. Samarskogo nauchn. tsentra Rossiyskoy akademii nauk. – 2011. – T. 13, № 4. – S. 120–125.
6. Peng D.Y., Robinson D.B. A new two-constant equation of state // Ind. Eng. Chem. Fundam. – 1976. – Vol. 15. – P. 59–64.
7. Brusilovskiy A.I. Fazovye prevrashcheniya pri razrabotke mestorozhdeniy nefti i gaza. – M.: Graal’, 2002. – 575 s.
8. Korn G.A., Korn T.M. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. – M.: Nauka, 1977. – 832 s.
9. Sharipov A.F., Volkov A.N. Sistema kontrolya i otsenki kachestva gazokondensatnykh issledovaniy skvazhin // Vesti gazovoy nauki. – 2016. – № 4(28). – S. 173–180.
10. Petroleum Engineering Handbook / Ed.-in-Chief H.B. Bradley. – Richardson, Texas, USA: SPE, 1987. – 1823 p.
11. Katz D.L., Firoozabadi A. Predicting Phase Behavior of Condensate/Crude-Oil Systems Using Methane Interaction Coefficients // J. of Petroleum Technology. – 1978. – Vol. 11. – P. 1649.
12. Whitson C.H., Brule M.R. Phase behavior: Monograph volume. – Texas, USA: SPE Henry L. Doherty series, 2000. – 235 p.
13. Kesler M.G., Lee B.I. Improve Predictions of Enthalpy of Fractions // Hydrocarbon Processing. – 1976. – Vol. 55. – P. 153.
14. Razrabotka podkhoda kompozitsionnogo modelirovaniya PVT-svoystv tyazheloy i vysokovyazkoy nefti na primere mestorozhdeniy yuga Permskogo kraya / K. Velaskes, A.O. Kozlova, V.A. Volkov, A.A. Kozlov // Neftepromyslovoe delo. – 2024. – № 6(666). – S. 35–46.
15. Shchebetov A.V., Galkin M.V. Otsenka kachestva i modelirovaniya gazokondensatnykh issledovaniy v usloviyakh neopredelennosti iskhodnykh dannykh // Gazovaya prom-st’. – 2009. – № 9. – S. 40.
16. Aguilar Zurita R.A., McCain W.D. An efficient tuning strategy to calibrate cubic EOS for compositional simulation // SPE-77382. – 2002.
17. Krasnova E.I. Metody issledovaniya PVT-svoystv gazokondensatnoy sistemy // Akademicheskiy zhurnal Zapadnoy Sibiri. – 2012. – № 4. – S. 9–10.