Revaluation of income using the apparatus of Markov processes
UDC: 338.2
DOI: -
Authors:
KARMANOV ANATOLY V.
1,
ORLOVA KSENIA P.
1
1 National University of Oil and Gas "Gubkin University", Moscow, Russia
Keywords: income with revaluation, Markov process with income, inflation, rate of convergence of the Markov process, revaluation of value, homogeneous Markov process
Annotation:
The authors of the article solve the problem of revaluing income from a technological facility operation. The object under consideration is a complex technical system consisting of elements that can be restored or replaced in case of failure. In this case, for the mathematical description of the technical system under study, a homogeneous Markov process with income is used. Thus, in the article, from the point of view of economic science, the total income from the facility operation represents a discounted profit before taxation. At the same time, the article’s matter makes it possible to estimate both its value and the "speed of convergence" to a certain stationary value of this profit. There is an example of calculating the revaluation of oil and gas equipment cost, this example illustrates the proposed valuation method.
Bibliography:
1. Ekonomika predpriyatiya: ucheb. i praktikum dlya vuzov / A.V. Kolyshkin [i dr.]; pod red. A.V. Kolyshkina, S.A. Smirnova. – 2-e izd. – M.: Yurayt, 2024. – 508 s.
2. Matveeva T.Yu. Makroekonomika: ucheb. dlya vuzov: v 2 ch. – M.: Izdat. dom Vysshey shkoly ekonomiki, 2017. – Ch. I. – 438 s.; Ch. II. – 476 s.
3. Menk'yu N.G. Printsipy Ekonomiks. – SPb.: Piter Kom, 1999. – 784 s.
4. Gradus A.E. Otsenka stoimosti biznesa: podkhody, metodologiya opredeleniya stoimosti predpriyatiya // Problemy ekonomiki i upravleniya neftegazovym kompleksom. – 2022. – № 12(216). – S. 14–18. – DOI: 10.33285/1999-6942-2022-12(216)-14-18
5. Karmanov A.V. Issledovanie upravlyaemykh konechnykh markovskikh tsepey s nepolnoy informatsiey (minimaksnyy podkhod). – M.: Fizmatlit, 2002. – 176 s.
6. Mayn Kh., Osaki S. Markovskie protsessy prinyatiya resheniy. – M.: Nauka, 1977. –175 s.
7. Kemeni Dzh., Snell Dzh. Konechnye tsepi Markova. – M.: Nauka, 1970. – 271 s.
8. Khovard R.A. Dinamicheskoe programmirovanie i markovskie protsessy. – M.: Sov. Radio, 1964. – 189 s.
9. Polovko A.M., Gurov S.V. Osnovy teorii nadezhnosti. – 2-e izd., pererab. i dop. – SPb.: BKhV-Peterburg, 2008. – 702 s.
10. Karmanov V.G. Matematicheskoe programmirovanie. – M.: Fizmatlit, 2004. – 264 s.
11. Faddeev D.K., Faddeeva V.N. Vychislitel'nye metody lineynoy algebry. – 3-e izd., ster. – SPb.: Lan', 2002. – 733 s.