Scientific and technical journal

«Proceedings of Gubkin University»

ISSN 2073-9028

Proceedings of Gubkin University
MATHEMATICAL MODEL OF COMPUTER SIMULATOR FOR TRUNK OIL PIPELINE DISPATCHERS

UDC: 004.415.2; 51-74
DOI: -

Authors:

Khaliullin A.R.1,
Stepin Y.P.1,
Sardanachnili S.A.1

1 Gubkin Russian State University of Oil and Gas (National Research University

Keywords: virtual professional training environment, computer simulator, mathematical model, Markov process, availability factor

Annotation:

The problem of mathematical modeling of computer simulator as a multicomponent realization of VPTE concept with components installed on remote computers in a network is discussed. The simulator complex is represented as a set of cooperative Markov processes with discrete states and continuous time. A random processes interaction scheme is formed, the states of processes are detailed; differential equations systems, initial conditions, normalization conditions and relations between equation solutions are made up. In addition, the article describes computer simulator operating modes, for each mode it determines evaluation of the complex functioning reliability index i.e. the availability factor. In collaboration with UML-diagrams, the mathematical functioning model of the computer simulator provides a possibility to describe its working process, to evaluate the parameters of the underlying Markov processes and to estimate the availability factor value.

Bibliography:

1. Fowler M. UML Distilled A Brief Guide to the Standard Object Modeling Language, 3rd Edition. — Addison-Wesley Professional, 2003. — 208 p.
2. Папилина Т.М., Леонов Д.Г., Степин Ю.П. Моделирование и оценка эффективности функционирования системы облачных вычислений в АСДУ//Автоматизация, телемеханизация и связь в нефтяной промышленности. — 2016. — № 7. — С. 29-33.
3. Ханджян А.О. Повышение надежности программного обеспечения информационно-измерительных и управляющих систем безопасности ядерных радиационно-опасных объектов. Диссертация на соискание ученой степени кандидата технических наук. — Москва, 2006.
4. Халиуллин А.Р., Швечков В.А., Леонов Д.Г. Организация взаимодействия программных компонентов многопользовательских гетерогенных распределенных комплексов моделирования динамических процессов трубопроводных систем//Труды XIV Всероссийского научного семинара „Математические модели и методы анализа и оптимального синтеза развивающихся трубопроводных и гидравлических систем”. Белокуриха, Алтайский край, 8-13 сентября 2014 г. — Иркутск: ИСЭМ СО РАН, 2014. — 410 с.
5. Халиуллин А.Р. Архитектурные решения и опытная реализация информационного обмена компонентов гетерогенных распределенных комплексов моделирования динамических процессов трубопроводных систем // Автоматизация, телемеханизация и связь в нефтяной промышленности. — 2016. — № 8.2016. — С. 17 — 24.
6. Халиуллин А.Р., Швечков В.А., Сарданашвили С.А. Архитектурные решения реализации управления компонентами распределенных комплексов поддержки принятия диспетчерских решений//Труды Российского государственного университета нефти и газа имени И.М. Губки- на. — 2015. — № 4 (281). — С. 114-128.
7. Вентцель Е.С. Исследование операций. — М.: Сов. радио, 1972. — 552 с.
8. Степин Ю.П., Трахтенгерц Э.А. Компьютерная поддержка управления нефтегазовыми технологическими процессами и производствами. Книга 1. — М.: Вектор ТиС, 2007. — 384 с. — Книга 2. — М.: МАКС Press, 2008. — 528 с.
9. ГОСТ 27.002-89. Надежность в технике. Основные понятия. Термины и определения. — М., 1990.