STUDY OF THE EFFECT OF THE ACTUAL BEND RADIUS OF A CONDUIT-CONDUCTOR IN THE JUSTIFICATION OF FEASIBILITY OF RECONSTRUCTION OF TRUNK OIL AND GAS PIPELINES BY THE METHOD OF “PIPE IN PIPE”
UDC: 624.1:624.9:53.043
DOI: 10.33285/2073-9028-2020-1(298)-88-102
Authors:
Seredyonok Viktor A.1,
Aginey Ruslan V.2,
Lopatin Alexey S.3
1 Public Company “Gazprom”, Moscow, Russian Federation
2 Ukhta State Technical University, Ukhta, Russian Federation
3 Gubkin Russian State University of Oil and Gas (National Research University), Moscow, Russian Federation
Keywords: pipeline, reconstruction, “pipe in pipe” method, trenchless method; diagnostic examination, dragging, bending radius, spatial position
Annotation:
The article presents the results of the study of the influence of the actual bending radius of the pipeline conductor when justifying the technical possibility of performing reconstruction of main oil and gas pipelines on complicated sections of the route using the “pipe in a pipe” method. The results of calculating the radius of curvature of the pipeline-conductor section based on the results of measuring the spatial position of the route crossing the water barrier are presented. The minimum step between the measurement points of the spatial position of the Belousovo-Leningrad section of the pipeline with a diameter of 720 mm is set to estimate the radius of curvature when concluding that the “pipe-in-pipe” method can be reconstructed. Expressions are proposed for determining the effort of dragging the working pipeline into the conductor pipeline and the stresses that occur when dragging the working lash of the pipeline on straight and curved sections. It was found that the combined forces of dragging the internal pipeline for the main and backup threads create stresses that do not exceed the yield strength of steel, which indicates the technical possibility of dragging the projected gas pipeline at underwater crossings.
Bibliography:
1. Hausner M., Dixon М. Optimized Design of Pipe-in-Pipe Systems. — SPE Production & Faci- lities. — 2002. — Vol. 19 (1).
2. Kagoura T. Development of a Flexible Pipe for Pipe-in-Pipe Technology/T. Kagoura, K. Ishii, S. Abe, T. Inoue at al. — Ocean Engineering. — 2003. — 12 p.
3. Mao S. Reliability Analysis and Design for Pipe-in-Pipe Pipelines With Centralizers/S. Mao, M. Kamal, W. Qiao, G. Dong, B. Duffy. — ASME 2015 34th International Cenference on Ocean, Offshore and Arctic Engineering. — 2015. — 8 p.
4. Müller H., Jarosch G. An innovative rehabilitation method the pipe-in-pipe system. — J. Korean Soc. for Nondestructive Testing. — 2010. — Vol. 76. — P. 10-13.
5. Ровенко Д.С. Бестраншейные методы реконструкции стальных газопроводов//Научный журнал. Инженерные системы и сооружения. — 2015. — № 2 (19). — С. 30-32.
6. Сапсай А.К. Выбор метода строительства подводных переходов магистральных трубопроводов//Нефтяное хозяйство. — 2017. — № 11. — С. 143-148.
7. Сарбаев Р.Р. Эффективность защитных конструкций типа "труба в трубе"//Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. — 2012. — № 2 (88). — С. 31-37.
8. СП 36.13330.2012 Магистральные трубопроводы. — Введ. 01.07.2013. — М.: Изд-во стандартов, 2013. — 122 с.
9. Исламов Р.Р. Совершенствование системы мониторинга технического состояния протяженных участков магистральных нефтегазопроводов c применением волоконно-оптических сенсоров деформации: Дисc. канд. техн. наук. — Ухта, 2018. — 168 с.
10. СП 86.13330.2014 Магистральные трубопроводы. — Введ. 01.06.2014. — М.: Изд-во стандартов, 2014. — 182 с.