Scientific and technical journal

«Proceedings of Gubkin University»

ISSN 2073-9028

Proceedings of Gubkin University
CALCULATION OF REGULATED NUMBER OF CALIBRATION ACTIVITIES FOR CATALYTIC COMBUTION SENSORS INSTALLED AROUND OPEN REFINERY INSTALLATIONS

UDC: 681.5
DOI: 10.33285/2073-9028-2020-4(301)-129-140

Authors:

Samarin Ilya V.1,
Kryuchkov Alexey V.1,
Strogonov Andrey Yu.1

1 Gubkin Russian State University of Oil and Gas (National Research University), Moscow, Russian Federation

Keywords: fuel and energy complex, petroleum refinery, fire safety, gas analyzer, thermochemical detector, open plant, maintenance, verification, calibration

Annotation:

The paper describes a variant of constructing a mathematical model for determining the regulated number of calibration measures for a single catalytic combustion sensor (CCS) and model for determining total number of measures for all CCS installed around open installations at an oil refinery. The relevance of the study of measures for the maintenance of CCS stationary gas analyzers located at the open installations of a refinery is described. The choice of devices of the thermochemical principle of operation has been substantiated. The model of the STM-10 gas analyzer is considered as an example. Information about the time intervals between checks and calibrations of CCS are used from the manual for this model of the device. The coefficient for the correction of the operating life of the sensitive element (SE) of the CCS is presented as a piecewise constant function. An approximate view of its dependence on the number of calibrations for the calibration gas mixture is given. It is mathematically substantiated that the total number of calibration activities for all CCS installed around the open installations of the refinery depends on the influence of environmental conditions, as well as on the number of installed CCS around the open installation and the number of calibrations during one calibration interval for one sensor.

Bibliography:

1. Kidam K., Hussin N.E., Hassan O., Ahmad A., Johari A., Hurme M. Accident prevention approach throughout process design life cycle. Process Safety and Environmental Protection. — 2014. — Vol. 92. — No. 5. — P. 412-422.
2. Самарин И.В., Фомин А.Н. Стратегическое планирование на предприятии: применение метода анализа иерархий для стратегического мониторинга деятельности//Экономика, статистика и информатика. Вестник УМО. — 2014. — № 5. — С. 84-89.
3. Самарин И.В. АСУ стратегического планирования на предприятии: уточнение методологических и инструментальных основ схемы планирования//Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. — 2017. — № 2. — С. 31-44.
4. Самарин И.В., Строгонов А.Ю. Модель оценки пожарной безопасности на объектах топливно-энергетического комплекса с помощью их временных характеристик на графах стратегического планирования в составе автоматизированной системы поддержки управления//Труды Российского государственного университета нефти и газа имени И.М. Губкина. — 2018. — № 4 (293). — С. 143-154.
5. Прохоров А.М. Большая советская энциклопедия: в 30 т. —  3-е изд. — М.: Советская энциклопедия, 1970.
6. Требования к установке сигнализаторов и газоанализаторов, ТУ-газ-86. — М., 1986 [Электронный ресурс]. Режим доступа: https://files.stroyinf.ru/Data1/9/9177/ (дата обращения: 13.09.2020).
7. Иванов Е.Н. Пожарная защита открытых технологических установок. — М.: Химия, 1975. — 199 с.
8. Рукин М.В. Пожарная безопасность нефтебаз, резервуарных парков, складов нефти и нефтепродуктов. [Электронный ресурс]. Режим доступа: http://www.ervist.ru/stati/pozharnaya-bezopasnost-neftebaz-rezervuarnyh-parkov-skladov-nefti-i-nefteproduktov.html (дата обращения: 15.09.2020).
9. Абросимов А.А., Топольский Н.Г., Федоров А.В. Автоматизированные системы пожаровзрывобезопасности нефтеперерабатывающих производств. — М.: МИПБ МВД России, 1999. — 239 с.
10. Korotcenkov G. Handbook of gas sensor materials. Volume 1: Conventional Approaches. — Springer, New York, 2013. — 442 р.
11. Классификация газоанализаторов. [Электронный ресурс]. Режим доступа: https:// www.gazoanalizators.ru/ poleznoe.html%26art%3D2 (дата обращения: 16.09.2020).
12. Хаматдинова А.В., Смородова О.В. Приборный контроль состояния газовоздушной среды на предприятиях нефтепереработки//Технологии техносферной безопасности. — 2015. — № 4 (62). — С. 325-331.
13. Веб-сайт ООО “КИПКомплект” [Электронный ресурс]. Режим доступа: http:// www.kipkomplekt.ru/sfera_neft.php (дата обращения: 16.09.2020).
14. Сигнализаторы СТМ-10, Руководство по эксплуатации, Альбом приложений, АПИ2 840.069 РЭ1 [Электронный ресурс]. Режим доступа: http://www.analitpribor-smolensk.ru/ products/bezopasnost_gazoanalizatory/stacionarnye_gazoanalizatory/signalizator_stm10/ (дата обращения: 20.09.2020).
15. Навацкий А.А., Бабуров В.П., Бабурин В.В., Фомин В.И., Фёдоров А.В. Производственная автоматика для предупреждения пожаров и взрывов. Пожарная сигнализация. — М.: Академия ГПС МЧС России, 2005. — 335 с.
16. Фомин В.И., Федоров А.В., Лукьянченко А.А., Костюченков Д.К. Автоматический аналитический контроль взрывоопасности воздушной среды промышленных объектов//Пожаровзрывобезопасность. — 2004. — Т. 13. — №. 4. — С. 49-54.
17. Френкель Б.А. Промышленные анализаторы состава и свойств жидкостей и газов в процессах переработки нефти. — М.: ЦНИИТЭнефтехим, 1995. — 145 с.
18. Информационный портал о газоанализаторах, газодетекторах и газосигнализаторах. Принципы работы газоанализаторов. [Электронный ресурс]. Режим доступа: https://gas-analyzer.ru/ (дата обращения: 24.09.2020).