Forecasting wind generation and assessing influence of climat parameters on wind power curve
UDC: 621.311
DOI: 10.33285/2073-9028-2022-1(306)-120-131
Authors:
ZUBAKIN VASILY A.1,
VELICHKO ARSENY I.1
1 Gubkin Russian State University of Oil and Gas (National Research University), Moscow, Russian Federation
Keywords: renewable energy sources, wind energy forecast, machine learning, wind farm, wholesale electricity and capacity market
Annotation:
The article is devoted to the forecasting of wind power generation. Existing forecasting methods are analyzed and assessed. The power curve of the wind turbine is modeled using various machine learning algorithms to assess the influence of climatic parameters on the wind power curve.
Bibliography:
1. Proect Irini Shushuevoi, pocvesheni matematicheskomy modelirovaniy v oblasti electroenergetiki. [Elektronnyj resurs]. Regim doctupa: https://www.mbureau.ru/blog/rezultaty-sorevnovaniya-v-alfaenergosbyt (Data obrachenia: 01.12.2021).
2. Yuan-Jia Ma., Ming-Yue Zhai A. Dual-Step Integrated Machine Learning Model for 24h-Ahead Wind Energy Generation Prediction Based on Actual Measurement Data and Environmental Factor School of Electronic Information Eng., Guangdong University of Petrochemical Tech. 24 May 2019.
3. Angamuthu CR., Mukherjee A., Campion M., Salehfar H., Hansen T., Lin J., Ranganathan P. A multi-stage price forecasting model for day-ahead electricity markets, 2018. Forecasting 1:3.
4. Wang X.C., Guo P., Huang X.B. A Review of Wind Power Forecasting Models. Energy Procedia, 2011, no. 12, р. 770–778. [Elektronnyj resurs]. Regim doctupa: http://dx.doi.org/10.1016/j.egypro.2011.10.103
5. Zhao D.M., Zhu Y.C., Zhang X. Research on Wind Power Forecasting in Wind Farms. Proceedings of the 2011 IEEE Power Engineering and Automation Conference, Wuhan, 8–9 September, 2011, р. 175–178. [Elektronnyj resurs]. Regim doctupa: http://dx.doi.org/10.1109/PEAM.2011.6134829
6. Zhao X., Wang S.X., Li T. Review of Evaluation Criteria and Main Methods of Wind Power Forecasting. Energy Procedia, 2011, no. 12, р. 761–769. [Elektronnyj resurs]. Regim doctupa: http://dx.doi.org/10.1016/j.egypro.2011.10.102
7. Wu Y., Hong J. A literature review of wind forecasting technology in the world. In Proceedings of the IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007, p. 504–509.
8. Thorarinsdottir T.L., Gneiting Т. Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2010, р. 173:371–388.
9. Zhao D.M., Zhu Y.C., Zhang X. Research on Wind Power Forecasting in Wind Farms. Proceedings of the 2011 IEEE Power Engineering and Automation Conference, Wuhan, 8–9 September 2011, р. 175–178. [Elektronnyj resurs]. Regim doctupa: http://dx.doi.org/10.1109/PEAM.2011.6134829
10. Wu Q., Guan F., Lv C., Huang Y. Ultra-short-term multi-step wind power forecasting based on CNN-LSTM. IET Renew. Power Gener., 2021, no. 15, р. 1019–1029.
11. Shabbir N., AhmadiAhangar R., Kütt L., Iqbal M.N., Rosin A. Forecasting short term wind energy generation using machine learning. In Proceedings of the 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 7–9 р.
12. Singh U., Rizwan M., Alaraj M., Alsaidan I. A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments. Energies, 2021, no. 14, p. 5196. [Elektronnyj resurs]. Regim doctupa: https://doi.org/10.3390/en14165196
13. Nabor otkrytyh dannyh s publichnoj veb-platformy Kaggle. [Elektronnyj resurs]. Regim doctupa: https://www.kaggle.com/pravdomirdobrev/texas-wind-turbine-dataset-simulated (Data obrachenia: 01.12.2021).