Scientific and technical journal

«Proceedings of Gubkin University»

ISSN 2073-9028

Proceedings of Gubkin University
Application of thermal accumulators to increase efficiency of air storage stations

UDC: 620.92
DOI: 10.33285/2073-9028-2023-3(312)-125-144

Authors:

FEDYUKHIN ALEXANDER V.1,
SOLOVYOVA OLGA V.2,
SOLOVIEV SERGEY A.2,
KARASEVICH VLADISLAV A.3,
SEMIN DANIIL V.1,
DRONOV STANISLAV A.1

1 National Research University “Moscow Power Engineering Institute”, Moscow, Russian Federation
2 Kazan State Energy University, Kazan, Russian Federation
3 National University of Oil and Gas “Gubkin University”, Moscow, Russian Federation

Keywords: energy storage, air-storage power plant, thermal battery, peaking power plant

Annotation:

The production of electricity by wind and solar power plants is characterized by significant daily and seasonal unevenness, which affects the operating modes of the generating equipment of power plants. An increase in the installed capacity of renewable energy sources (RES) leads to an increase in the required control range of the power system. This is followed by the need to introduce flexible generating equipment or storage power plants. A potential solution to the issue of managing peak conditions is the commissioning of air storage power plants (ASPS). The advantages of using VNPP as a method of accumulating electrical energy include high maneuverability and operation in wide temperature and pressure ranges. One of the current trends in increasing the efficiency of VNPP is the recovery of thermal energy within the cycle through a thermal accumulator. The analysis of the thermal circuits of adiabatic VNPP shows the relevance of using thermal accumulators for the recovery of thermal energy from air. A thermal accumulator, as a rule, must ensure the storage of thermal energy in the temperature range of 80–400 °С. Taking into account the current level of development of science, phase change materials can be used for these purposes. The main advantages of using such materials are high heat capacity and constant operating temperature. Phase change materials are capable of accumulating and releasing large amounts of thermal energy when a substance transitions from one phase to another, most often from a solid phase to a liquid. The article presents a numerical simulation of the melting/crystallization process, with the help of which the time to reach the melting temperature and the time of phase transition are determined.

Bibliography:

1. Zubakin V.A., Velichko A.I. Prognozirovanie vyrabotki vetrjanyh jelektrostancij i ocenka vlijanija klimaticheskih parametrov na krivuju moshhnosti vetrogeneratora // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2022. – № 1 (306). – S. 120–131.
2. Ocenka potenciala vetrovoj i solnechnoj jenergii Rossii i KNR/B.I.U. Isroilov, M.M. Sutaev, R.D. Mingaleev [i dr.] // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2022. – № 3 (308). – S. 123–138.
3. Beloborodov S.S., Gasho E.G., Nenashev A.V. Ocenki «uglerodoemkosti» i uglerodnoj “nejtral’nosti” jekonomiki ES i RF // Promyshlennaja jenergetika. – 2021. – № 11. – S. 38–47.
4. Beloborodov S.S., Dudolin A.A. Vlijanie razvitija VIJe na sbalansirovannost’ proizvodstva i potreblenija jelektrojenergii v EJeS Rossii // Novoe v rossijskoj jelektrojenergetike. – 2020. – № 5. – S. 6–17.
5. Martynov V.G., Bessel’ V.V., Lopatin A.S. Ob uglerodnoj nejtral’nosti Rossii // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2022. – № 1 (306). – S. 5–20.
6. Veremeenko E.S. Jekologicheskie riski na predprijatii Zelenchukskoj GJeS-GAJeS filiala PAO “Rusgidro” // Sbornik nauchnyh statej po materialam Vserossijskoj nauchno-prakticheskoj konferencii. – Stavropol’: Stavropol’skij gosudarstvennyj agrarnyj universitet, 2021. – S. 51–56.
7. Kompleksnaja rekonstrukcija i modernizacija Kubanskoj GAJeS / A.A. Malega, A.A. Borodulin, V.N. Panov [i dr.] // Gidrotehnicheskoe stroitel’stvo. – 2020. – № 8. – S. 27–35.
8. A review on compressed air energy storage: Basic principles, past milestones and recent developments / M. Budt, D. Wolf, R. Span, J. Yan // Applied Energy. – 2016. – № 170. – P. 250–268.
9. A review of thermal energy storage in compressed air energy storage system / Q. Zhou, D. Du, Ch. Lu [et al.] // Energy. – 2019. – № 188. – P. 115–119.
10. Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK / M. King, A. Jain, R. Bhakar [et al.] // Renewable and Sustainable Energy Reviews. – 2021. – № 139.
11. Thermodynamic analysis and multi-objective optimization of a trigenerative system based on compressed air energy storage under different working media and heating storage media / P. Li, Q. Hu, Zh. Han [et al.] // Energy. – 2022. – № 239.
12. NYSEG SENECA // Compressed air energy storage (CAES) demonstration project, Final Phase 1 Technical Report. September 2012. – 66 p.
13. Ol’hovskij G.G., Kazarjan V.A., Stoljarevskij A.Ja. Vozdushno-akkumulirujushhie gazo-turbinnye jelektrostancii (VAGTJe). – Izhevsk: Institut komp’juternyh issledovanij, 2011. – 358 s.
14. Thermodynamic and economic performance analysis of heat and power cogeneration system based on advanced adiabatic compressed air energy storage coupled with solar auxiliary heat / P. Li, Q. Hu, Y. Sun, Zh. Han // Journal of Energy Storage. – 2021. – № 42.
15. Transient thermodynamic modeling and economic analysis of an adiabatic compressed air energy storage (A-CAES) based on cascade packed bed thermal energy storage with encapsulated phase change materials / Sh.B. Mousavi, M. Adib, M. Soltania [et al.] // Energy Conversion and Management. – 2021. – № 243.
16. Synthesis and thermal properties of novel sodium nitrate microcapsules for high-temperature thermal energy storage / J. Li, W. Lu, Z. Luo, Y. Zeng // Sol Energy Mater Sol Cells. – 2017. – № 159. – 440 p.
17. KNO3/NaNO3 – Graphite materials for thermal energy storage at high temperature: Part II. Phase transition properties / J. Lopez, Z. Acem, P. Elena // Appl. Therm. Eng. – 2010. –№ 30 (13). – P. 1580–1586.
18. Expanded graphite for thermal conductivity and reliability enhancement and supercooling decrease of MgCl2∙6H2O phase change material / Z. Song, Y. Deng, J. Li, H. Nian // Mater. Res. Bull. – 2018. – Р. 102–203.