Top.Mail.Ru

Scientific and technical journal

«Proceedings of Gubkin University»

ISSN 2073-9028

Optimization of procedures for office stage of in-line inspection using methodology of sufficient statistics

UDC: 622.691.4
DOI: -

Authors:

ZAVYALOV ALEXEY P.1,
ZHUCHKOV KONSTANTIN N.1,
ZAGREBNEVA ANNA D.2

1 National University of Oil and Gas “Gubkin University”, Moscow, Russian Federation
2 Don State Technical University, Rostov-on-Don, Russian Federation

Keywords: digital signal processing, algorithm, sufficient statistics, in-line inspection, weld seam, office-stage data analysis

Annotation:

The study focuses on developing an algorithm to process signals from magnetic field sensors of an in-line inspection tool during the office stage of data analysis. A description of existing approaches is provided, taking into account the development of modern digital signal processing methods. Special emphasis is placed on optimizing the analyst's working time during office-based data processing, which provides a direct economic benefit and reduces the influence of human factors in routine tasks. The necessity of automating the business process through a robust algorithm is demonstrated. The proposed solution utilizes the methodology of sufficient statistics based on the Rao – Blackwell – Lehmann – Scheffé theorem as a tool to estimate parameters of periodic signals corresponding to weld seams observed in magnetic detection data. A mathematical model is developed, forming the basis for evaluating the potential accuracy of the proposed methods. It is established that, for sample sizes n > 15, the relative root means square error in estimating the weld signal repetition period using the sufficient statistics methodology is significantly lower compared to traditional estimation methods. The results are validated across a wide signal-to-noise ratio range from 0 to 10 dB, where traditional estimators typically encounter challenges. In addition to theoretical calculations, modeling results are presented, confirming the achieved effect. The calculation and modeling data are illustrated with graphs and diagrams, demonstrating the robustness of the proposed methodology to variations in n and signal-to-noise ratio. The obtained results have a broad range of applications and can be utilized in the design of control and measurement equipment, development of medical devices, telecommunications, and the design of pulse-Doppler radars, among other fields.

Bibliography:

1. Razrabotka i primenenie oborudovanija dlja vnutritrubnoj diagnostiki linejnoj chasti magistral’nyh gazoprovodov / V.A. Shabanov, V.A. Gorichev, A.V. Gubin, D.A. Kovtunov // Oborudovanie i tehnologii dlja neftegazovogo kompleksa. – 2019. – № 2 (110). – S. 9–13. – DOI: 10.33285/1999-6934-2019-2(110)-9-13 – EDN AZISZX.
2. Vyjavlenie i ocenka opasnosti uprugoplasticheskih izgibov po dannym OOO “NPC “Vnutritrubnaja diagnostika” / R.R. Usmanov, M.V. Chuchkalov, N.N. Ivanova, A.N. Kukushkin // Oborudovanie i tehnologii dlja neftegazovogo kompleksa. – 2021. – № 1 (121). – S. 78–82. – DOI: 10.33285/1999-6934-2021-1(121)-78-82 – EDN OVSKOW.
3. Zhuchkov K.N., Zav’jalov A.P. Sovershenstvovanie tehnologii vnutritrubnoj diagnostiki truboprovodov s ispol’zovaniem algoritma avtomatizirovannoj obrabotki diagnosticheskih dannyh // Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov. – 2022. – T. 12, № 6. – S. 540–549. – DOI: 10.28999/2541-9595-2022-12-6-540-549 – EDN WZSILO.
4. Abakumov A.A., Abakumov A.A. (ml.). Magnitnaja diagnostika gazonefteprovodov. – M.: Jenergoatomizdat, 2001. – 432 s.
5. Opyt razrabotki nejroseti dlja avtomatizacii processa opredelenija shvov na izobrazhenijah, poluchennyh pri provedenii vnutritrubnogo diagnosticheskogo obsledovanija linejnoj chasti magistral’nogo gazoprovoda / S.V. Skrynnikov, A.V. Shibanov, S.V. Svetlov [i dr.] // Nauka i tehnika v gazovoj promyshlennosti. – 2024. – № 3 (99). – S. 74–85. – EDN FNBJNF.
6. Vostrecov A.G., Filatova S.G. Ocenka parametrov impul’snyh signalov neizvestnoj formy na fone additivnoj smesi belogo gaussovskogo shuma i linejnoj sostavljajushhej s neizvestnymi parametrami // Radiotehnika i jelektronika. – 2021. – T. 66, № 8. – S. 772–781. – DOI: 10.31857/ S003384942108009X – EDN SGAPGN.
7. Ovodkova K.V., Zhuchkov K.N., Zav’jalov A.P. K voprosu podgotovki ishodnogo massiva informacii dlja obuchenija nejronnyh setej opredeleniju parametrov defektov truboprovodov // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2023. – № 2 (311). – S. 85–97. – DOI: 10.33285/2073-9028-2023-2(311)-85-97 – EDN TPJNNM.
8. Van Tris G. Teorija obnaruzhenija, ocenok i moduljacii. T. 1. – M.: Sov. radio, 1972. – 744 s.
9. Levin B.R. Teoreticheskie osnovy statisticheskoj radiotehniki. T. 2. – M.: Sov. radio, 1975. – 512 s.
10. Borovkov A.A. Matematicheskaja statistika. – M.: Nauka, 1984. – 704 s.
11. Zaks Sh. Teorija statisticheskih vyvodov. – M.: Mir, 1975. – 776 s.
12. Bogdanovich V.A., Vostrecov A. G. Teorija ustojchivogo obnaruzhenija, razlichenija i ocenivanija signalov. – M.: FIZMATLIT, 2003. – 316 s.
13. Perspektivnye podhody v zadachah ocenki parametrov signalov / N.G. Parhomenko, S.G. Horuzhij, K.N. Zhuchkov [i dr.] // Morskaja radiojelektronika. – 2006. – № 2 (16). – S. 46–49. – EDN FPVKCE.
14. Abratkiewicz K., Samczyński P., Czarnecki K. Radar signal parameters estimation using phase accelerogram in the time-frequency domain // IEEE Sensors Journal. – 2019. – Vol. 19, No. 13. – P. 5078–5085.
15. Taki H., Mansour A., Azou S. Pulse parity modulation for impulse radio UWB transmission based on non-coherent detection // Physical Communication. – 2020. – Vol. 40. – P. 101061.
16. XAFS study of local atomic structure in InAs at low pressures / L.A. Bugaev, Y.V. Latokha, L.A. Avakyan [et al.] // AIP Conference Proceedings: X-RAY ABSORPTION FINE STRUCTURE – XAFS13: 13th International Conference, Stanford, CA, 09–14 July 2006. – Vol. 882. – Stanford, CA: AIP pablishing, 2007. – P. 395–397. – DOI: 10.1063/1.2644536 – EDN MRJWOF.
17. Deglitching procedure for XAFS / K.N. Zhuchkov, V.A. Shuvaeva, K. Yagi, H. Terauchi // Journal of Synchrotron Radiation. – 2001. – Vol. 8, No. 2. – P. 302–304. – DOI: 10.1107/S0909049500020951 – EDN LGOGGV.
18. Romm Ja.E., Sokolov I.N. Komp’juternoe diagnostirovanie aritmii, tahikardii i bradikardii s primeneniem shem sortirovki // Izvestija JuFU. Tehnicheskie nauki. – 2013. – № 7 (144). – S. 131–136. – EDN QOUCPH.
19. The use of machine learning for various predictive models of the occurrence of pipe defects / K. Zhuchkov, A. Zavyalov, A. Lopatin [et al.] // Insight – Civil Engineering. – 2024. – Vol. 7, No. 2. – P. 646. – DOI: 10.18282/ice.v7i2.646 – EDN BZCBWZ.
20. Improving the accuracy of estimates of the pulse sequence period using the methodology of complete sufficient statistics / K.N. Zhuchkov, M. Vasilchenko, A.D. Zagrebneva, A.P. Zavyalov // Scientific Reports. – 2022. – Vol. 12, No. 1. – P. 19932. – DOI: 10.1038/s41598-022-24457-2 – EDN JCVKPJ.