Creating three-dimensional models of storage tanks with incomplete information based on terrestrial laser scanning data
UDC: 621.384.8:528.711.2
DOI: -
Authors:
VASILIEV GENNADY G.
1,
SALNIKOV ANTON P.
1,
GORBAN NIKOLAY N.
2
1 National University of Oil and Gas “Gubkin University”, Moscow, Russian Federation
2 CPC-R, Moscow, Russian Federation
Keywords: terrestrial laser scanning, storage tank, assessment of technical condition, three-dimensional model
Annotation:
Over the past ten years, terrestrial laser scanning has become widely used as a modern tool for assessing of technical condition of oil and petroleum product storage tanks. This is explained by the fact that terrestrial laser scanning allows obtaining a large volume of diagnostic information about the storage tanks. The ability to create a reliable three-dimensional model of a storage tank, suitable for assessing the stress-strain state of its elements, is one of the advantages of using terrestrial laser scanning. However, specialists are faced with the problem of losing some information about the geometric shape of storage tank elements when processing terrestrial laser scanning data. The article examines the main reasons for the loss of some information about the geometric shape of storage tank elements. It is shown what problems this can lead to when creating a three-dimensional model of a storage tank. Methods for restoring the lost part of the information are considered, and the results of an experiment on the research of the applicability of these methods for restoring the lost part of the information on the geometric shape of the elements of the storage tanks are presented.
Bibliography:
1. Analiz opyta primenenija trehmernogo lazernogo skanirovanija na ob’’ektah OAO “AK “Transneft’ ” / G.G. Vasil’ev, M.A. Lezhnev, A.P. Sal’nikov [i dr.] // Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov. – 2015. – № 2 (18). – S. 48–55.
2. Gorban’ N.N., Sal’nikov A.P. Vybor razreshenija nazemnogo lazernogo skanirovanija pri obsledovanii rezervuarov // Truboprovodnyj transport: teorija i praktika. – 2021. – № 1 (77). – S. 59–61.
3. Epifanova E.A. Opredelenie deformacij stal’nogo vertikal’nogo cilindricheskogo rezervuara ob’’emom V = 10 000 m³ dlja nefti s primeneniem nazemnogo lazernogo skanirovanija // Izvestija Tomskogo politehnicheskogo universiteta. Inzhiniring georesursov. – 2020. – T. 331, № 11. – S. 78–87. – DOI: 10.18799/24131830/2020/11/2887
4. Metodika, tehnologii i opyt primenenija nazemnogo lazernogo skanirovanija dlja avtomatizirovannoj inspekcii rezervuarov / V.V. Serkov, D.H. Rezvanov, D.M. Gilaev, A.A. Zagretdinov // Markshejderskij vestnik. – 2021. – № 3 (142). – S. 15–23.
5. Lezhnev M.A., Leonovich I.A., Sal’nikov A.P. O nekotoryh voprosah tochnosti izmerenij pri obsledovanii rezervuarov // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2017. – № 1 (286). – S. 78–87.
6. Primenenie novyh tehnologij i oborudovanija v stroitel’nom kontrole pri sooruzhenii rezervuarov / S.I. Sencov, B.S. Lange, F.G. Tuhbatullin, A.P. Sal’nikov // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2014. – № 4 (277). – S. 60–68.
7. Oshibki pri opredelenii ob’’ema produkta, hranimogo v vertikal’nyh stal’nyh rezervuarah / E.S. Shackih, M.A. Lezhnev, M.G. Murzin, V.M. Pisarevskij // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2018. – № 4 (293). – S. 82–87.
8. GOST 31385-2023. Rezervuary vertikal’nye cilindricheskie stal’nye dlja nefti i nefteproduktov. Obshhie tehnicheskie uslovija. – URL: https://docs.cntd.ru/document/1302050679 (data obrashhenija: 29.04.2025).
9. Rukovodstvo po bezopasnosti “Rekomendacii po tehnicheskomu diagnostirovaniju svarnyh vertikal’nyh cilindricheskih rezervuarov dlja nefti i nefteproduktov” (utverzhdeno Prikazom Rostehnadzora ot 31 marta 2016 g. № 136). – URL: https://docs.cntd.ru/document/1200133803 (data obrashhenija: 29.04.2025).
10. Sal’nikov A.P. Ocenka naprjazhenno-deformirovannogo sostojanija rezervuarov po rezul’tatam nazemnogo lazernogo skanirovanija: dis. ... kand. tehn. nauk: 25.00.19. – M., 2016. – 167 s.
11. Gorban’ N.N. Razrabotka metodiki monitoringa malociklovoj ustalosti v lokal’nyh geometricheskih defektah stenki rezervuarov morskih terminalov nefti: dis. ... kand. tehn. nauk: 25.00.19. – M., 2021. – 148 s.
12. Guo X., Xiao J., Wang Y. A survey on algorithms of hole filling in 3D surface reconstruction // The Visual Computer. – 2018. – Vol. 34, № 4. – P. 93–103. – DOI: 10.1007/s00371-016-1316-y
13. A comparison of hole-filling methods in 3D / E. Perez, S. Salamanca, P. Merchan, A. Adan // International Journal of Applied Mathematics and Computer Science. – 2016. – Vol. 26, № 4. – P. 885–903. – DOI: 10.1515/amcs-2016-0063
14. Optimization Algorithm for Point Cloud Quality Enhancement Based on Statistical Filtering / Q. Zhao, X. Gao, J. Li, L. Luo // Journal of Sensors. – 2021. – Vol. 2021. – P. 1–10. – DOI: 10.1155/ 2021/7325600
15. LIMOFilling: Local Information Guide Hole-Filling and Sharp Feature Recovery for Manifold Meshes / G. Gou, H. Sui, D. Li [et al.] // Remote Sens. – 2022. – № 14 (2). – P. 289. – DOI: 10.3390/rs14020289