Scientific and technical journal
«Environmental protection in oil and gas complex»
ISSN 2411-7013

The effect of gas condensate in the water-methanol waste of natural gas on the conversion of methanol on modified silica gel adsorbents
UDC: 544.473-039.63
DOI: -
Authors:


1 Kuban State University, Krasnodar, Russia
2 Gazprom transgaz Krasnodar, Krasnodar, Russia
Keywords: natural gas, modified silica gel adsorbent, stable gas condensate, methanol conversion, dimethyl ether, catalytic activity, elements analysis, phase analysis
Annotation:
The authors of the article focus on the study of gas condensate effect in the water-methanol waste of natural gas on the conversion methanol on modified silica gel adsorbents ASM. The effect of gas condensate on the catalytic activity of industrial adsorbents was studied at an experimental installation of a cyclic process and a unit of gas preparation for transportation. According to the data of elemental analysis, phase analysis, parametric characteristics (specific surface area and specific pore volume) of samples and the catalytic activity of adsorbents, the conversion of methanol in the water-methanol waste of natural gas in the presence of gas condensate was estimated. The decrease of methanol conversion to dimethyl ether in the presence of gas condensate was revealed due to the presence of hydrocarbons in the gas condensate, capable of forming coke deposits at the stage of high-temperature regeneration and a change of the specific surface area of adsorbents with a constant phase composition and concentration of aluminum oxide.
Bibliography:
1. Kataliticheskaya aktivnost' modifitsirovannykh oksidom alyuminiya silikageley v usloviyakh konversii metanola v dimetilovyy efir / Z.A. Temerdashev, A.S. Kostina, A.V. Rudenko [i dr.] // Zhurn. prikladnoy khimii. – 2021. – T. 94, № 5. – S. 570–579. – DOI: 10.31857/S00444618210500422. Osobennosti protekaniya khimicheskikh protsessov pri razlichnykh tekhnologiyakh regeneratsii adsorbentov na ustanovkakh podgotovki gaza k transportu / D.A. Vasyukov, S.G. Shablya, V.P. Petruk [i dr.] // Gazovaya prom-st'. – 2021. – № 6(817). – S. 64–70.
3. Razrabotka energoresursosberegayushchikh tekhnologiy pri ekspluatatsii PKhG gazotransportnoy sistemy / A.N. Shipovalov, M.Yu. Zemenkova, V.A. Shpilevoy [i dr.] // Sovremennye problemy nauki i obrazovaniya. – 2015. – № 2-2. – S. 31.
4. Methanol as a hydrate inhibitor and hydrate activator / B. Kvamme, J. Selvåg, N. Saeidi, T. Kuznetsova // Physical Chemistry Chemical Physics. – 2018. – Vol. 20, Issue 34. – P. 21968–21987. – DOI: 10.1039/C8CP02447B
5. Bateni H., Able C.M. Development of Heterogeneous Catalysts for Dehydration of Methanol to Dimethyl Ether: a Review // Catalysis in Industry. – 2019. – Vol. 11, Issue 1. – P. 7–33. – DOI: 10.1134/S2070050419010045
6. Hierarchical Low Si/Al Ratio Ferrierite Zeolite by Sequential Postsynthesis Treatment: Catalytic Assessment in Dehydration Reaction of Methanol / E. Catizzone, M. Migliori, A. Aloise [et al.] // J. of Chemistry. – 2019. – DOI: 10.1155/2019/3084356
7. Issledovanie fiziko-khimicheskoy prirody protsessov, protekayushchikh pri regeneratsii alyumosilikatnykh adsorbentov na ustanovkakh podgotovki gaza k transportu / Z.A. Temerdashev, A.V. Rudenko, I.A. Kolychev, A.S. Kostina // Sorbtsionnye i khromatograficheskie protsessy. – 2021. – T. 21, № 2. – S. 153–160. – DOI: 10.17308/sorpchrom.2021.21/3349
8. Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol / D. Macina, Z. Piwowarska, K. Tarach [et al.] // Materials Research Bulletin. – 2016. – Vol. 74. – P. 425–435. – DOI: 10.1016/j.materresbull.2015.11.018
9. Sheveleva N.A. Napravleniya i metody dekarbonizatsii neftegazovogo sektora // Zashchita okruzhayushchey sredy v neftegazovom komplekse. – 2023. – № 2(311). – S. 25–31. – DOI: 10.33285/2411-7013-2023-2(311)-25-31
10. Benzene co-reaction with methanol and dimethyl ether over zeolite and zeotype catalysts: Evidence of parallel reaction paths to toluene and diphenylmethane / J.S. Martinez-Espin, K. De Wispelaere, M.W. Erichsen [et al.] // J. of Catalysis. – 2017. – Vol. 349. – P. 136–148. – DOI: 10.1016/j.jcat.2017.03.007
11. Mashkina A.V. The features of the catalytic synthesis of methanethiol from dimethyl sulfide // Petroleum Chemistry. – 2009. – Vol. 49, Issue 5. – P. 420–426. – DOI: 10.1134/S0965544109050168
12. Thiolation behaviors of methanol catalyzed by bifunctional ZSM-5@t-ZrO2 catalyst / Lijie Pei, Jianxin Cao, Fei Liu [et al.] // Catalysis Today. – 2022. – Vol. 397-399. – P. 379–388. – DOI: 10.1016/j.cattod.2021.08.011
13. Yermakova A.V., Mashkina A.V. Kinetic Model of the Reaction of Methanol with Hydrogen Sulfide // Kinetics and catalysis. – 2004. – Vol. 45, Issue 4. – P. 522–529. – DOI: 10.1023/B:KICA.0000038080.28824.f8
14. Effect of hydrogen sulfide and methanethiol adsorption on acidic properties of metal oxides: an infrared study / A. Travert, O.V. Manoilova, A.A. Tsyganenko [et al.] // J. of Physical Chemistry B. – 2002. – Vol. 106, Issue 6. – P. 1350–1362. – DOI: 10.1021/jp0126762
15. Mashkina A.V., Paukshtis E.A., Yakovleva V.N. Sintez metilmerkaptana iz metanola i serovodoroda v prisutstvii kislotnykh katalizatorov // Kinetika i kataliz. – 1988. – T. 29, № 3. – S. 596–603.
16. Modification of the Acidic Properties of NaY Zeolite by H2S Adsorption – an Infrared Study / F. Maugé, A. Sahibed-Dine, M. Gaillard, M. Ziolek // J. of Catalysis. – 2002. – Vol. 207, Issue 2. – P. 353–360. – DOI: 10.1006/jcat.2002.3533