Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
On the convergence of the "estimated flow rate" method for hydraulic network flow rate distribution analysis

UDC: 519.61:621.644
DOI: 10.33285/2782-604X-2023-12(605)-44-52

Authors:

KORELSTEIN LEONID B.1

1 Piping Systems Research & Engineering Co (NTP Truboprovod), Moscow, Russia

Keywords: hydraulic network, edge flow rates, node pressures, classical flow rate distribution task, "estimation flow rates" algorithm, optimization problem, uniform convergence, modified "estimation flow rates" algorithm

Annotation:

The article contains the mathematical prove of uniform convergence from any initial point of "estimation flow rates" algorithm (EFR) for classical flow rate distribution problem (CFRDP), for some class of networks with odd head loss vs flow rate edge functions. EFR algorithm (one of variants of "chord algorithms") was earlier described and successfully used during several decades. The result clarifies the nature of EFR stability. It is found out that for CFRDP in the form of optimization problem for node pressures, each step of EFR algorithm is continuous mapping which strictly decreases the value of minimized function for all points expect the only fixed point (which is CFRDP unique solution). In this way the uniform convergence of EFR follows from general topological theorem which is formulated and proved in the article. Also, a more universal modification of EFR (MERP) is proposed for more general class of network (without demand of odd edge head loss vs flow rate function), which keeps the same uniform convergence property for most hydraulic networks in engineering practice.

Bibliography:

1. Duginov L., Rozovskiy M., Korelstein L. A method of analysis of complex hydraulic networks // E3S Web of Conf. – 2020. – Vol. 219. Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic Systems 2020, Online, Oct. 16–22, 2020. – P. 01002. – DOI: 10.1051/e3sconf/202021901002
2. Lobachev V.G. Novyy metod uvyazki kolets pri raschete vodoprovodnykh setey // Sanitarnaya tekhnika. – 1934. – № 2. – S. 8–12.
3. Cross H. Analysis of flow in networks of conduits or conductors // University of Illinois Bulletin. – 1936. – No. 286. Engineering Experiment Station. – 36 p.
4. Sukharev M.G., Stavrovskiy E.R. Raschety sistem transporta gaza s pomoshch'yu vychislitel'nykh mashin. – M.: Nedra, 1971. – 206 s.
5. Merenkov A.P., Khasilev V.Ya. Teoriya gidravlicheskikh tsepey. – M.: Nauka, 1985. – 278 s.
6. Wood D.J., Charles C.O.A. Hydraulic network analysis using linear theory // J. of the Hydraulics Division. – 1972. – Vol. 98, Issue 7. – P. 1157–1170. – DOI: 10.1061/JYCEAJ.0003348
7. Epp R., Fowler A.G. Efficient code for steady state flows in networks // J. of the Hydraulics Division. – 1970. – Vol. 96, Issue 1. – P. 43–56. – DOI: 10.1061/JYCEAJ.0002316
8. Martin D.W., Peters G. The application of Newton’s method to network analysis by digital computers // J. of the Institute of Water Engineers. – 1963. – Vol. 17. – P. 115–129.
9. Todini E., Pilati S. A gradient algorithm for the analysis of pipe networks // Computer Applications in Water Supply. Vol. 1. System analysis and simulation. – London: John Wiley & Sons, 1988. – P. 1–20.
10. Sukharev M.G. Utochnennaya formalizatsiya zadach analiza gidravlicheskikh tsepey // Truboprovodnye sistemy energetiki: Upravlenie razvitiem i funktsionirovaniem. – Novosibirsk: Nauka, 2004. – S. 15–24.
11. Todini E. A Unifying View on the Different Looped Pipe Network Analysis Algorithms // Computing and Control for the Water Industry / R. Powell, K.S. Hindi (eds). – Baldock, UK: Research Studies Press Ltd, 1999. – P. 63–80.
12. Reformulated Co-Tree Flows Method Competitive with the Global Gradient Algorithm for Solving Water Distribution System Equations / S. Elhay, A.R. Simpson, J. Deuerlein [et al.] // J. of Water Resources Planning and Management. – 2014. – Vol. 140, Issue 12. – DOI: 10.1061/(ASCE)WR.1943-5452.0000431
13. Alvarruiz F., Martinez-Alzamora F., Vidal A.M. Improving the Efficiency of the Loop Method for the Simulation of Water Distribution Systems // J. of Water Resources Planning and Management. – 2015. – Vol. 141, Issue 10. – DOI: 10.1061/(ASCE)WR.1943-5452.0000539
14. Khasilev V.Ya. Lineynye i linearizovannye preobrazovaniya skhem gidravlicheskikh tsepey // Izv. AN SSSR. Energetika i transport. – 1964. – № 2. – S. 231–243.
15. Khasilev V.Ya. Elementy teorii gidravlicheskikh tsepey // Izv. AN SSSR. Energetika i transport. – 1964. – № 1. – S. 61–88.
16. Baranchikova N.I., Epifanov S.P., Zorkal'tsev V.I. Nekanonicheskaya zadacha potokoraspredeleniya s zadannymi naporami i otborami v uzlakh // Voda i ekologiya: problemy i resheniya. – 2014. – № 2(58). – S. 31–38.
17. Novitskiy N.N. Raschet potokoraspredeleniya v gidravlicheskikh tsepyakh na baze ikh linearizatsii uzlovymi modelyami sekushchikh i khord // Izv. RAN. Energetika. – 2013. – № 6. – S. 56–69.
18. Epifanov S.P., Zorkal'tsev V.I. Prilozhenie teorii dvoystvennosti k modelyam potokoraspredeleniya // Vychislitel'nye tekhnologii. – 2009. – T. 14, № 1. – S. 67–79.
19. Idelchik I.E. Handbook of Hydraulic Resistance. – 4th Edition Revised and Augmented. – New York: Begell House, 2008. – 861 p.
20. Korelstein L. Hydraulic networks with pressure-dependent closure relations, under restrictions on the value of nodal pressures. Maxwell matrix properties and monotonicity of flow distribution problem solution // E3S Web Conf. – 2019. – Vol. 102. Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic Systems 2019, Irkutsk, Russia, June 16–22, 2019. – P. 01005. – DOI: 10.1051/e3sconf/201910201005