Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Interpolation of gas-liquid multicomponent fluid properties for hydraulic calculations of pipelines

UDC: 519.65
DOI: -

Authors:

SKRIPACHENKO MARIA P.1

1 Piping Systems Research & Engineering Co (NTP Truboprovod), Moscow, Russia

Keywords: bi-cubic spline interpolation, spline, makima, thermodynamic library, interpolation nodes, optimization of calculations, two-phase and single-phase areas, thermal physical properties, phase equilibrium

Annotation:

The article proposes the use of bi-cubic spline interpolation to optimize hydraulic and thermal calculations while processing thermodynamic library data. The research was carried out both in the single-phase gas and liquid areas as well as in the two-phase gas-liquid area. The accuracy of bi-cubic spline interpolation was tested for various thermodynamic libraries on multi-component mixtures. Various coordinate systems (P, x), (P, T), (P, H), (P, S) were tested, optimal coordinates and interpolation grids were selected based on the nature of changes of various thermal-physical properties. The experiments were conducted in the range of up to 80 % of critical pressure, since in the near-critical area the properties behavior changes sharply. The plots of properties and their absolute and relative errors were also produced for a more detailed study and determination of problem areas where property functions undergo sharp changes that make interpolation difficult. The results obtained demonstrate an acceptable level of accuracy of the approximation of the thermodynamic libraries data, required for engineering calculations.

Bibliography:

1. Yudovina E.F., Pashenkova E.S., Korel'shteyn L.B. Programmnyy kompleks "Gidrosistema" i ego ispol'zovanie dlya gidravlicheskikh raschetov truboprovodnykh sistem // Truboprovodnye sistemy energetiki. Metodologicheskie i prikladnye problemy mat. modelirovaniya. – Novosibirsk: Nauka, 2015. – S. 438–446.
2. Lisin S.Yu., Korel'shteyn L.B. "Predklapan" – rossiyskiy instrument proektirovaniya sistem avariynogo sbrosa // Prom. servis. – 2012. – № 3. – S. 16–22.
3. Skripachenko M.P., Korel'shteyn L.B. Ispol'zovanie kubicheskoy interpolyatsii dlya uskoreniya teplovykh i gidravlicheskikh raschetov // Uspekhi v khimii i khimicheskoy tekhnologii. – 2020. – T. 34, № 6(229). – S. 66–68.
4. Skripachenko M.P., Korel'shteyn L.B., Gartman T.N. Ispol'zovanie bikubicheskoy interpolyatsii dlya uskoreniya teplovykh i gidravlicheskikh raschetov real'nykh gazov i zhidkostey // Uspekhi v khimii i khimicheskoy tekhnologii. – 2021. – T. 35, № 8(243). – S. 134–138.
5. Korel'shteyn L.B., Skripachenko M.P. Ispol'zovanie metodov dinamicheskoy interpolyatsii pri raschete techeniy v truboprovodakh // Mat. modeli i metody analiza i optimal'nogo sinteza razvivayushchikhsya truboprovodnykh i gidravlicheskikh sistem: tr. XVIII Vseros. nauch. seminara, Irkutsk, 12–18 sent. 2022 g. – Irkutsk: ISEM SO RAN, 2022.
6. Numerical Recipes: The Art of Scientific Computing / W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. – 3rd Edition. – Cambridge University Press, 2007. – 1235 p.
7. Agrapart Q., Batailly A. Cubic and bicubic spline interpolation in Python. – École Polytechnique de Montréal, 2020. – 52 p.
8. Takács B., Hadjimichael Y. High order discretization methods for spatial-dependent epidemic models // Mathematics and Computers in Simulation. – 2022. – Vol. 198. – P. 211–236. – DOI: 10.1016/j.matcom.2022.02.021
9. Hall C.A. Natural cubic and bicubic spline interpolation // SIAM J. on Numerical Analysis. – 1973. – Vol. 10, Issue 6. – P. 1055–1060. – DOI: 10.1137/0710088
10. Shikin E.V., Plis A.I. Krivye i poverkhnosti na ekrane komp'yutera. – M.: Dialog-MIFI, 1996. – 237 s.
11. Lénárd M. Spline interpolation in two variables // Studia Scientiarum Mathematicarum Hungarica. – 1985. – Vol. 20. – P. 145–154.
12. Handbook of Mathematics / I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Mühlig. – Berlin: Springer, 2015. – 1207 p.
13. Fast Calculation of Refrigerant Properties in Vapor Compression Cycles Using Spline-Based Table Look-Up Method (SBTL) / Lixiang Li, J. Gohl, J. Batteh [et al.] // Linköping Electronic Conf. Proc. – 2019. – Vol. 154. Proc. of the 1st American modelica conf., Oct. 9–10, 2018, Cambridge, Massachusetts, USA. – P. 77–84. – DOI: 10.3384/ecp1815477
14. Laughman C.R., Zhao Y., Nikovski D. Fast Refrigerant Property Calculations Using Interpolation-Based Methods // Int. Refrigeration and Air Conditioning Conf., Purdue, July 16–19, 2012. – Mitsubishi Electric Research Laboratories, 2012.
15. A hyperbolic phase-transition model coupled to tabulated EoS for two-phase flows in fast depressurizations / M. De Lorenzo, Ph. Lafon, M. Pelanti [et al.] // Nuclear Engineering and Design. – 2021. – Vol. 371. – P. 110954. – DOI: 10.1016/j.nucengdes.2020.110954
16. Miller W.Ch. Fast and accurate water and steam properties programs for two-phase flow calculations // Nuclear Engineering and Design. – 1994. – Vol. 149, Issue 1-3. – P. 449–458.
17. Schulze Ch. A. Contribution to Numerically Efficient Modelling of Thermodynamic Systems: PhD thesis. – Braunschweig, 2014. – 133 p. – URL: https://leopard.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00035600/Diss_Schulze_Christian.pdf
18. Bonilla J., Yebra L.J., Dormido S. Chattering in dynamic mathematical two-phase flow models // Applied Mathematical Modelling. – 2012. – Vol. 36, Issue5. – P. 2067–2081. – DOI: 10.1016/j.apm.2011.08.013
19. Thermodynamic interpolation for the simulation of two-phase flow of non-ideal mixtures / S. Brown, L. Peristeras, S.B. Martynov [et al.] // Computers & Chemical Engineering. – 2016. – Vol. 95. – P. 45–57. – DOI: 10.1016/j.compchemeng.2016.09.005
20. Mupparapu S.P. Supercritical thermodynamic property evaluation via adaptive mesh tabulation: thesis for the degree of Master of Applied Science in Mechanical and Mechatronics Engineering. – Waterloo, Ontario, Canada, 2019. – 100 p. – URL: https://uwspace.uwaterloo.ca/bitstream/handle/10012/14448/Mupparapu_SaiPraneeth.pdf?sequence=1&isAllowed=y
21. Pini M. Turbomachinery Design Optimization using Adjoint Method and Accurate Equations of State: PhD thesis. – Milano, 2013. – 164 p. – URL: https://www.politesi.polimi.it/bitstream/10589/89787/1/2014_03_PhD_Pini.pdf