Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Automation and Informatization of the fuel and energy complex
Inverse tasks of underground hydrodynamics with clarification of the spatial distribution of facies

UDC: 622.276+622.279+519.876.5+532.546
DOI: -

Authors:

LYUBIMOVA OLGA V.1,
ZAKIROV ERNEST S.1

1 Oil and Gas Research Institute, Russian Academy of Sciences, Moscow, Russia

Keywords: geological-hydrodynamic model, inverse task, facies, automated adaptation, geologically consistent adaptation, kriging, porosity field, sandy-silt rocks, gradient method, quality criterion

Annotation:

The approach developed in this article is based on the idea that in real sedimentation conditions there is no clear boundary between two discrete (integer) facies. The formation of a geological body in different facies conditions predetermines the corresponding reservoir properties. So, to calculate properties correlated with a grid cell, averaging of properties between all facies that influenced a given cell will be required. A continuous facies parameter can be interpreted as a weighted fraction of a particular facies in the given cell, which would be a transitional reservoir type between pure integer facies types. The article discusses an algorithm for refining the spatial distribution of facies in the task of automated adaptation of a 3D hydrodynamic reservoir model (the inverse task). The resulting fields of reservoir properties take into account the fractional contribution of the constituent facies when calculating these properties. Thus, the proposed approach allows more realistically taking into account the features of sedimentation environments.

Bibliography:

1. Abasov M.T., Zakirov S.N., Palatnik B.M. Adaptatsiya geologo-matematicheskoy modeli gazovoy zalezhi pri vodonapornom rezhime // Dokl. AN SSSR. – 1989. – T. 38, № 2. – S. 321–324.
2. Oliver D.S., Reynolds A.C., Ning Liu. Inverse Theory for Petroleum Reservoir Characterization and History Matching. – 1st edition. – Cambridge: Cambridge University Press, 2008. – P. 180–192. – DOI: 10.1017/CBO9780511535642
3. Yeh W.W.-G. Review of Parameter Identification in Groundwater Hydrology: The Inverse Problem // Water Resources Research. – 1986. – Vol. 22, Issue 2. – P. 95–108. – DOI: 10.1029/WR022i002p00095
4. Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. – Philadelphia: SIAM, 2005. – XII, 342 p.
5. Dubrule O. Geostatistics for Seismic Data Integration in Earth Models. – SEG Books, 2003. – 273 p. – DOI: 10.1190/1.9781560801962
6. Goovaerts P. Geostatistics for Natural Resources Evaluation. – Oxford University Press, 1997. – 483 p.
7. Geostatistically-consistent History Matching / E.S. Zakirov, I.M. Indrupskiy, O.V. Lubimova, I.M. Shiriaev // 14th European Conf. on the Mathematics of Oil Recovery, Catania, Italy, Sept. 8–11. – 2014. – P. P62. – DOI: 10.3997/2214-4609.20141827
8. Soglasovannaya adaptatsiya geostatisticheskikh modeley zalezhey nefti i gaza / E.S. Zakirov, I.M. Indrupskiy, O.V. Lyubimova [i dr.] // Dokl. Akademii nauk. – 2017. – T. 476, № 4. – S. 421–425. – DOI: 10.7868/S0869565217280143
9. Advanced Geologically-consistent History Matching and Uncertainty Evaluation / E.S. Zakirov, I.M. Indrupskiy, I.M. Shiryaev [et al.] // 15th European Conf. on the Mathematics of Oil Recovery, Amsterdam, the Netherlands, Aug. 29 – Sept. 01. – 2016. – DOI: 10.3997/2214-4609.201601812
10. Shiraliev I.A. Identifikatsiya fil'tratsionno-emkostnykh parametrov plasta pri tsiklicheskoy ekspluatatsii podzemnykh khranilishch gaza v gazovom rezhime // Avtomatizatsiya i informatizatsiya TEK. – 2022. – № 2(583). – S. 49–52. – DOI: 10.33285/2782-604X-2022-2(583)-49-52
11. Vybor effektivnykh resheniy po optimizatsii razrabotki zalezhey Druzhnogo mestorozhdeniya na osnove fatsial'nogo analiza / A.G. Laptey, R.M. Rakhimov, S.A. Fufaev [i dr.] // Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. – 2021. – № 3(351). – S. 36–42. – DOI: 10.33285/2413-5011-2021-3(351)-36-42