Methodology for creating an integrated geological and technological model of the Western area of the Orenburg oil and gas condensate field
UDC: 004:621.67:622.279
DOI: -
Authors:
KOLUBAEV ALEXANDER S.
1,
VALEEV ARTEM F.
1,
MANIN VYACHESLAV A.
1,
SHALKIN YURI V.
1,
SAMARTSEV SERGEY K.
1
1 Gazprom dobycha Orenburg, Orenburg, Russia
Keywords: integrated modeling, methodology, gas field, gas production, well, pipeline
Annotation:
Currently, several unrelated models are used to predict the performance indicators of the Orenburg oil and gas condensate field: geological, hydrodynamic and a simplified model of the surface network system. In addition, all models are not connected to the existing geological and field data base. This approach does not allow fully planning geological and technical measures and evaluating their effectiveness, to predict the processes of deposits watering. It also provides difficulties for making accurate medium- and long-term forecasts with the control of pressure dynamics at the nodes of the surface network system. The creation of an integrated geological and technological model of the Orenburg field will significantly improve the quality of long-term forecasts, optimize the technological mode of wells, reveal problematic areas, perform accurate calculations for geological and technical operations, plan commissioning of new capacities, determine options for optimizing existing facilities, taking into account changes in control pressure at the nodes of the system. The integrated model will show with high accuracy the impact of parameters changes for any of the subsystems – reservoir, well, flow line on the entire system, which will increase the efficiency of management decision-making. The author of the article considers the existing methods for constructing integrated geological and technological models of the field. An adapted methodology for the development of an integrated model is proposed, taking into account the specific features of the Orenburg field and the base of geological and field information of the enterprise. The results of building an integrated geological-technological model are presented on the example of a field zone developed by wells that relate to the complex gas preparation unit № 15 in the Western area of the field. The model built on the basis of the methodology will allow taking into account all available geological and field information; it can be used for a comprehensive assessment of various factors influence on the field development and will help to make the proper management decisions.
Bibliography:
1. A Case Study of Integrated Asset Modeling to Support Reservoir Management Strategies for Four Dry Gas Fields Sharing Production Facilities / O. Espinola, M. Rocha, N.C. Alvarez [et al.] // SPE Energy Resources Conf., Port of Spain, Trinidad and Tobago, June 9–11, 2014. – DOI: 10.2118/SPE-169918-MS
2. Opyt postroeniya integrirovannoy modeli dlya resheniya problem razrabotki mestorozhdeniya / A.V. Podnebesnykh, A.V. Baryshnikov, A.V. Gubaev [i dr.] // Izv. vuzov. Neft' i gaz. – 2016. – № 1(115). – S. 27–33.
3. Building and Application of Integrated Model of a Large Sakhalin Offshore Oil and Gas Condensate Field / M.A. Kuzevanov, D.O. Skvortsov, M.S. Karmazin, S.V. Buchinskiy // SPE Russian Petroleum Technology Conf., Moscow, Russia, Oct. 16–18, 2017. – DOI: 10.2118/187793-MS
4. Integrirovannoe modelirovanie kak instrument, povyshayushchiy effektivnost' razrabotki mnogoplastovogo neftegazokondensatnogo mestorozhdeniya / E.V. Bogdanov, I.L. Chameev, D.A. Reshetnikov [i dr.] // Neft. khoz-vo. – 2019. – № 12. – S. 52–55. – DOI: 10.24887/0028-2448-2019-12-52-55
5. New Solution in Integrated Asset Modeling for Multi Reservoirs Coupling / K. Bogachev, A. Grishin, E. Piskovskiy, V. Erofeev // SPE Russian Petroleum Technology Conf., Oct. 26–29, 2020, virtual. – DOI: 10.2118/201946-MS
6. Primenenie integrirovannogo modelirovaniya v neftegazovoy otrasli / E.V. Filippov, G.N. Chumakov, I.N. Ponomareva, D.A. Martyushev // Nedropol'zovanie. – 2020. – T. 20, № 4. – S. 386–400. – DOI: 10.15593/2712-8008/2020.4.7
7. RD 153-39.0-047-00. Reglament po sozdaniyu postoyanno deystvuyushchikh geologo-tekhnologicheskikh modeley neftyanykh i gazoneftyanykh mestorozhdeniy. – Vved. 2000–03–10. – M.: Mintopenergo Rossii, 2000. – 130 s.
8. STO Gazprom 2-3.1-1187-2019. Mestorozhdeniya gazovye, gazokondensatnye, neftegazovye, neftegazokondensatnye. Tsifrovye geologicheskie modeli. Metodika sozdaniya, otsenki kachestva i poryadok aktualizatsii. – Vved. 2019–12–01. – SPb.: Gazprom ekspo, 2020. – VI, 37 s.
9. STO Gazprom 2-3.3-1200-2020. Mestorozhdeniya gazovye, gazokondensatnye, neftegazovye, neftegazokondensatnye. Tsifrovye gidrodinamicheskie modeli. Metodika sozdaniya, otsenki kachestva i poryadok aktualizatsii. – SPb.: Gazprom ekspo, 2021.
10. STO Gazprom 2-3.3-1203-2020. Mestorozhdeniya gazovye, gazokondensatnye, neftegazovye, neftegazokondensatnye. Tsifrovye tekhnologicheskie modeli sistemy sbora i podgotovki uglevodorodov k transportu. Metodika sozdaniya, otsenki kachestva i poryadok aktualizatsii. – Vved. 2020–06–19. – SPb.: Gazprom ekspo, 2021. – 65 s.
11. STO Gazprom 2-3.3-1238-2021. Mestorozhdeniya gazovye, gazokondensatnye, neftegazovye, neftegazokondensatnye. Tsifrovye modeli. Metodika otsenki kachestva, poryadok priemki i provedeniya ekspertizy. – Vved. 2021–03–25. – SPb.: Gazprom ekspo, 2022. – IV, 28 s.
12. Alabert F.G. Stochastic Imaging of Spatial Distributions Using Hard and Soft Information: Master's Thesis. – Stanford, CA: Stanford University, 1987. – 416 p.
13. Deutsch C.V., Journel A.G. GSLIB: Geostatistical Software Library and User's Guide. – New York: Oxford University Press, 1998. – 369 p.
14. Solov'ev N.A., Valeev A.F., Salikhov A.O. Modelirovanie v zadache vosstanovleniya promyshlennoy dobychi gaza iz obvodnennykh skvazhin // Avtomatizatsiya, telemekhanizatsiya i svyaz' v neftyanoy promyshlennosti. – 2017. – № 11. – S. 7–10.