Top.Mail.Ru

Scientific and technical journal

«Automation and Informatization of the fuel and energy complex»

ISSN 0132-2222

Generation of finite-difference schemes for solution of the seismic wave propagation problem in absorbing media using high-order expansion

UDC: 550.34.013.4+004.4
DOI: -

Authors:

ARSENIEV-OBRAZTSOV SERGEY S.1,
SOKOLOV ALEXANDER A.1

1 National University of Oil and Gas "Gubkin University", Moscow, Russia

Keywords: finite-difference schemes code generation, high-order accuracy expansion, partial derivative equations with variable coefficients, seismic wave propagation simulation, absorbing media, symbolic computations, computer algebra systems

Annotation:

The authors of the article propose methods and algorithms for generating finite-difference schemes for partial differential equations with variable coefficients using symbolic calculations implemented on computer algebra systems. Two finite-difference schemes are built for solving the two-dimensional problem of seismic wave propagation in viscoelastic media, in which the fourth-order expansions are used to approximate the space derivatives. Given results of comparative analysis of the presented schemes with the known second order scheme on the example having an analytical solution. The advantages and disadvantages of using schemes with a wide computational pattern are noted. Architectural features of modern heterogeneous super-computer systems are taken into account when parallelizing the above-mentioned algorithms.

Bibliography:

1. Arsen'ev-Obraztsov S.S. Generatsiya koda programm dlya chislennogo modelirovaniya slozhnykh mezhdistsiplinarnykh zadach termogazodinamicheskogo vozdeystviya na plasty bazhenovskoy svity // Tr. RGU nefti i gaza im. I.M. Gubkina. – 2009. – № 3(256). – S. 114–120.
2. Arsen'ev-Obraztsov S.S. Chislennoe modelirovanie mezhdistsiplinarnykh zadach kodogeneratsiey obobshchennogo metoda pryamykh na podvizhnykh, adaptivnykh setkakh // Tr. RGU nefti i gaza im. I.M. Gubkina. – 2010. – № 2(259). – S. 120–131.
3. Arsen'ev-Obraztsov S.S. Chislennoe modelirovanie rasprostraneniya voln v sploshnykh sredakh s lineynymi opredelyayushchimi sootnosheniyami // Tr. RGU nefti i gaza im. I.M. Gubkina. – 2012. – № 3(268). – S. 13–23.
4. Arsen'ev-Obraztsov S.S., Zhukova T.M. Pogloshchayushchie granichnye usloviya dlya chislennogo resheniya zadach teorii vyazkouprugosti // Zhurn. vychislit. matematiki i mat. fiziki. – 1987. – T. 27, № 2. – S. 301–306.
5. Glogovskiy V.M., Rayman M.R. Algoritm resheniya pryamoy dinamicheskoy zadachi seysmorazvedki v dvumernoy uprugoy srede // Izv. AN SSSR. Fizika Zemli. – 1981. – № 5. – S. 42–53.
6. Zhukova T.M. Metodika modelirovaniya volnovykh poley v neodnorodnykh sredakh na osnove chislennogo resheniya pryamoy dinamicheskoy zadachi seysmorazvedki: dis. … kand. tekhn. nauk: 01.04.12. – M., 1984. – 193 s.
7. Kogan S.Ya. Kratkiy obzor teoriy pogloshcheniya seysmicheskikh voln // Izv. AN SSSR. Fizika Zemli. – 1966. – № 11. – S. 1–16.
8. Kol'skiy G. Volny napryazheniya v tverdykh telakh / per. s angl. V.S. Lenskogo. – M.: Inostr. lit., 1955. – 194 s.
9. Characterizing Output Bottlenecks of a Production Supercomputer: Analysis and Implications / Bing Xie, S. Oral, Ch. Zimmer [et al.] // ACM Transactions on Storage. – 2020. – Vol. 15, Issue 4. – Article No. 26. – DOI: 10.1145/3335205
10. Dai N., Vafidis A., Kanasewich E. Composite absorbing boundaries for the numerical simulation of seismic waves // Bulletin of the Seismological Society of America. – 1994. – Vol. 84, No. 1. – P. 185–191. – DOI: 10.1785/bssa0840010185
11. Evaluation and optimization of multicore performance bottlenecks in supercomputing applications / J. Diamond, M. Burtscher, J.D. McCalpin [et al.] // IEEE Int. Symposium on Performance Analysis of Systems and Software (IEEE ISPASS), Austin, TX, USA, 10–12 April, 2011. – P. 32–43. – DOI: 10.1109/ISPASS.2011.5762713
12. Harris F.E. Mathematics for Physical Science and Engineering: Symbolic Computing Applications in Maple and Mathematica. – Academic Press, 2014. – 749 p.
13. Automatic Code Generation and Optimization of Large-scale Stencil Computation on Many-core Processors / Li Mingzhen, Liu Yi, Yang Hailong [et al.] // Proceedings of the 50th Int. Conf. on Parallel Processing, Lemont IL USA, Aug. 9–12, 2021. – DOI: 10.1145/3472456.3473517
14. Shimokawabe T., Onodera N. A High-Productivity Framework for Adaptive Mesh Refinement on Multiple GPUs // Computational Science – ICCS 2019: 19th Int. Conf., Faro, Portugal, June 12–14, 2019. – Springer Int. Publishing, 2019. – P. 281–294. – DOI: 10.1007/978-3-030-22734-0_21
15. Shingareva I.K., Lizárraga-Celaya C. Maple and Mathematica: A Problem Solving Approach for Mathematics. – Vienna: Springer, 2009. – XVIII, 484 p. – DOI: 10.1007/978-3-211-99432-0
16. Stewart J.M. Python for Scientists. – Cambridge University Press, 2017. – XII, 220 p.
17. Zhao Jian-Guo, Shi Rui-Qi. Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations // Applied Geophysics. – 2013. – Vol. 10, Issue 3. – P. 323–336. – DOI: 10.1007/s11770-013-0388-y