Top.Mail.Ru

Scientific and technical journal

«Proceedings of Gubkin University»

ISSN 2073-9028

Proceedings of Gubkin University
Improving reliability of inline inspection results

UDC: 620.179.14
DOI: -

Authors:

OVODKOVA KSENIA V.1,
ZAVYALOV ALEKSEY P.2,
ZHUCHKOV KONSTANTIN N.2

1 Gazprom Diagnostika, Saint Petersburg, Russian Federation
2 National University of Oil and Gas “Gubkin University”, Москва, Российская Федерация

Keywords: corrosion, defect, gas pipeline, inline inspection, electrometry

Annotation:

The article is dedicated to the problem of improving the reliability of diagnostic data. The authors made an attempt to combine the results of inline inspection with information obtained during electrometric surveys. To assess the correlation of heterogeneous data and determine the feasibility of developing an advanced comprehensive methodology, a large dataset was processed within the corporate database over several decades. Characteristic metrics were obtained and numerical modeling was carried out to assess the convergence of the results. The outcomes of this work can be used for deep learning of a neural network, which is highly likely to predict the occurrence of defects and their evolution, taking into account the dynamics of electrometric data.

Bibliography:

1. Zhukov D.V., Komarov D.V., Konovalov S.V. Sistema analiza rezul’tatov vnutritrubnogo diagnostirovaniya dlya ocenki tekhnicheskogo sostoyaniya linejnoj chasti magistral’nyh gazoprovodov // Sistemy avtomatizacii v obrazovanii, nauke i proizvodstve. AS’2019: Trudy XII Vserossijskoj nauchno-prakticheskoj konferencii (s mezhdunarodnym uchastiem), Novokuzneck, 28–30 noyabrya 2019 g. – URL: https://elibrary.ru/mwmdyo?ysclid=lwezlgjsp6141129371
2. Abakumov A.A., Abakumov A.A. (ml.). Magnitnaya diagnostika gazonefteprovodov. – M.: Energoatomizdat, 2001. – 432 s.
3. Sovershenstvovanie i optimizaciya diagnosticheskih rabot na gazoprovodah / I.I. Veliyulin, A.V. Zaharov, D.K. Migunov [i dr.] // Gazovaya promyshlennost’. – 2013. – № S (700). – S. 15–17. – EDN RSDMNB.
4. Zhuchkov K.N., Zav’yalov A.P. Sovershenstvovanie tekhnologii vnutritrubnoj diagnostiki truboprovodov s ispol’zovaniem algoritma avtomatizirovannoj obrabotki diagnosticheskih dannyh // Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov. – 2022. – T. 12, № 6. – S. 540–549. – DOI: 10.28999/2541-9595-2022-12-6-540-549 – EDN WZSILO.
5. Improving the accuracy of estimates of the pulse sequence period using the methodology of complete sufficient statistics / K. Zhuchkov, M. Vasil’chenko, A. Zagrebneva, A. Zav’yalov // Scientific Reports. – 2022. – Vol. 12, № 1. – P. 19932. – DOI: 10.1038/s41598-022-24457-2 – EDN JCVKPJ.
6. Vostrecov A.G., Filatova S.G. Ocenka parametrov impul’snyh signalov neizvestnoj formy na fone additivnoj smesi belogo gaussovskogo shuma i linejnoj sostavlyayushchej s neizvestnymi pa-rametrami // Radiotekhnika i elektronika. – 2021. – T. 66, № 8. – S. 772–781. – DOI: 10.31857/ S003384942108009X – EDN SGAPGN.
7. Bulanov V.A., Fomicheva O.E. Metod derev’ev reshenij dlya zadach binarnoj i mul’tiklassovoj klassifikacii // Inzhenernaya fizika. – 2020. – № 3. – S. 19–26. – DOI: 10.25791/infizik. 03.2020.1123 – EDN PSJNSZ.
8. Algoritmy komp'yuternogo zreniya i iskusstvennogo intellekta dlya detekcii defektov na energeticheskom oborudovanii i ob"ektah truboprovodnogo transporta / A.I. Velichko, V.A. Zubakin, M.D. Tregubenko, K.N. Yusupov // Oborudovanie i tekhnologii dlya neftegazovogo kompleksa. – 2024. – № 1 (139). – S. 71–79. – EDN IDELSU.
9. Shatrov A.V., Pashchenko D.E. Sravnenie klassicheskih regressionnyh modelej s modelyami, postroennymi s pomoshch’yu prodvinutyh metodov mashinnogo obucheniya // Advanced Science. – 2019. – № 1 (12). – S. 24–28. – DOI: 10.25730/VSU.0536.19.004 – EDN QANBHL.
10. Kudo D., Tajima H. Fisher information matrix as a resource measure in the resource theory of asymmetry with general connected-Lie-group symmetry // Physical Review A. – 2023. – Vol. 107, № 6. – P. 062418. – DOI: 10.1103/physreva.107.062418 – EDN ZKEMHF.
11. Vyshegorodceva G.I., Mihajlova E.S. Sovershenstvovanie sistemy tekhnicheskogo obsluzhivaniya gazoprovodov putem vnedreniya RBI-metodologii // Sbornik dokladov IV Regional’noj nauchno-tekhnicheskoj konferencii “Gubkinskij universitet v reshenii voprosov neftegazovoj otrasli Rossii”, posvyashchennoj 90-letiyu Gubkinskogo universiteta i fakul’teta ekonomiki i upravleniya, Moskva, 22–23 oktyabrya 2020 g. – M.: Izdatel’skij centr RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2020. – S. 106. – EDN ILZQAG.
12. Zav’yalov A., Zhuchkov K., Vasil’chenko M. Process Pipeline Strength Calculation Methodology Enhancement Using Finite-Element Method // Journal of Pipeline Systems Engineering and Practice. – 2023. – Vol. 14, № 2. – DOI: 10.1061/JPSEA2.PSENG-1401
13. Moubray J. Reliability-centered Maintenance. Second Edition. – New York, Industrial Press Inc., 1997.
14. Lyapichev D.M., Lopatin A.S. Metodologicheskie osnovy monitoringa tekhnicheskogo sostoyaniya magistral’nyh gazoprovodov pri nestacionarnyh rezhimah raboty // Gazotransportnye sistemy: nastoyashchee i budushchee (GTS-2023): Tezisy IX Mezhdunarodnoj nauchno-tekhnicheskoj konferencii, Kazan’, 03–07 aprelya 2023 g. – Kazan’: OOO “Nauchno-issledovatel’skij institut prirodnyh gazov i gazovyh tekhnologij – Gazprom VNIIGAZ”. – 2023. – S. 94. – EDN YMHECC.
15. Ovodkova K.V., Zhuchkov K.N., Zav’yalov A.P. K voprosu podgotovki iskhodnogo massiva informacii dlya obucheniya nejronnyh setej opredeleniyu parametrov defektov truboprovodov // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2023. – № 2 (311). – S. 85–97.
16. Issledovanie tochnostnyh harakteristik i skhodimosti metodov prognozirovaniya poyavleniya defektov na truboprovode s ispol’zovaniem iskusstvennogo intellekta / K.N. Zhuchkov, A.P. Zav’yalov, K.V. Ovodkova, D.S. Pochikeev // Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2023. – № 4 (313). – S. 104–117.
17. Vasil’chenko M., Zav’yalov A.P., Zhuchkov K.N. Increasing the Stability of a Spatially Distributed Information System using a Robust Algorithm for Filtering Anomalous Measurements // Information Technology in Industry. – 2020. – Vol. 8, № 3. – P. 1–7. – EDN HDIRIX.