Научно-технический журнал

«Нефтепро-
мысловое дело»

ISSN 0207-2351

Нефтепромысловое дело
Влияние слоистости сланца на развитие микромасштабных пор и трещин

УДК: 553.981
DOI: -

Авторы:

ФУ Ц.1,2,
ВЭЙ Ц.1,2,
СУЛТАНОВ Ш.Х.3,
ГАЮБОВ А.Т.1,2,
ЧЖОУ Ц.1,2,
СУЙ С.1,2,
ЯН И.1,2
1 Национальная ключевая лаборатория разработки сланцевой нефти в континентальных отложениях Северо-восточного нефтяного университета, Дацин, Китай
2 Научно-исследовательский институт разработки нетрадиционных нефтегазовых ресурсов Северо-восточного нефтяного университета, Дацин, Китай
3 Уфимский государственный нефтяной технический университет, Уфа, Россия

Ключевые слова: сланцевый коллектор нефти, структура порового пространства, сканирующий электронный микроскоп, статистический анализ

Аннотация:

Характеристики слоистости сланцевых пород играют важную роль в распределении пор и трещин в коллекторах. Однако еще недостаточно изучена зависимость структуры пор и трещин от литологического состава сланцевых пород. В данной статье приведены результаты исследований влияния типа сланца на развитие пор и трещин, а также построения моделей пор и трещин с учетом литологической неоднородности пород. Уточнен механизм, определяющий распределение пор и трещин под воздействием характеристик слоистости сланцевых пород.

Список литературы:

1. Regional conditions cause contrasting behavior in U-isotope fractionation in black shales: Constraints for global ocean palaeo-redox reconstructions / S.K. Gangl, C.H. Stirling, H.C. Jenkyns [et al.] // Chemical Geology. – 2003. – Vol. 623. – P. 121411. – URL: https://doi.org/10.1016/j.chemgeo.2023.121411

2. Restoration of sedimentary environment and geochemical features of deep marine Longmaxi shale and its significance for shale gas: A case study of the Dingshan area in the Sichuan Basin, South China / Y. Feng, X.M. Xiao, P. Gao [et al.] // Marine and Petroleum Geology. – 2003. – Vol. 151. – P. 106186. – URL: https://doi.org/10.1016/j.marpetgeo.2023.106186

3. You K., Flemings P.B. Methane Hydrate Formation and Evolution During Sedimentation // J. of Geophysical Research: Solid Earth. – 2021. – Vol. 126(4). – URL: https://doi.org/10.1029/2020JB021235

4. Multiscale simulations of shale gas transport in micro/nano-porous shale matrix considering pore structure influence / H. Yu, Y.B. Zhu, X. Jin [et al.] // J. of Natural Gas Science and Engineering. – 2019. – Vol. 64. – P. 28–40. – URL: https://doi.org/10.1016/j.jngse.2019.01.016

5. Micro- to nano-scale areal heterogeneity in pore structure and mineral compositions of a sub-decimeter-sized Eagle Ford Shale / Q.M. Wang, Q.H. Hu, C. Zhao [et al.] // International J. of Coal Geology. – 2022. – Vol. 261. – P. 104093. – URL: https://doi.org/10.1016/j.coal.2022.104093

6. Zhao Y.N., Jin Z.H. Hydrocarbon mixture phase behavior in multi-scale systems in relation to shale oil recovery: The effect of pore size distributions // Fuel. – 2021. – Vol. 291. – P. 120141. – URL: https://doi.org/10.1016/j.fuel.2021.120141

7. Zhang Z.D., Yu Q.C. The effect of water vapor on methane adsorption in the nanopores of shale // J. of Natural Gas Science and Engineering. – 2022. – Vol. 101. – P. 104536. – URL: https://doi.org/10.1016/j.jngse.2022.104536

8. Characterizing pore-level oil mobilization processes in unconventional reservoirs assisted by state-of-the-art nuclear magnetic resonance technique / X. Zhang, B. Wei, J.Y. You [et al.] // Energy. – 2021. – Vol. 236. – P. 121549. – URL: https://doi.org/10.1016/j.energy.2021.121549

9. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal / A.P. Radlinski, M. Mastalerz, A.L. Hinde [et al.] // International J. of Coal Geology. – 2004. – Vol. 59. – P. 245–271. – URL: https://doi.org/10.1016/j.coal.2004.03.002

10. Liu X.F., Nie B.S. Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel. – 2016. – Vol. 182. – P. 314–322. – URL: https://doi.org/10.1016/j.fuel.2016.05.110

11. A comprehensive pore structure study of the Bakken Shale with SANS, N2 adsorption and mercury intrusion / K.Q. Liu, M. Ostadhassan, L.W. Sun [et al.] // Fuel. – 2019. – Vol. 245. – P. 274–285. – URL: https://doi.org/10.1016/j.fuel.2019.01.174

12. Impact of shale properties on pore structure and storage characteristics / R.M. Bustin, A.M. Bustin, A. Cui [et al.]// SPE Shale Gas Production Conference, 2008. – URL: https://doi.org/10.2118/119892-MS

13. Clarkson C.R., Bustin R.M. Variation in micropore capacity and size distribution with composition in bituminous coal of the western Canadian sedimentary basin // Fuel. – 1996. – Vol. 75(13). – P. 1483–1498. – URL: https://doi.org/10.1016/0016-2361(96)00142-1

14. Adsorption isotherm calculation and mechanism of high pressure and high temperature shale gases / S. Yang, C.P. Zhao, B.Y. Ji [et al.] // Fuel. – 2023. – Vol. 331(Part 2). – P. 125854. – URL: https://doi.org/10.1016/j.fuel.2022.125854

15. Adeleye J.O., Akanji L.T. A quantitative analysis of flow properties and heterogeneity in shale rocks using computed tomography imaging and finite-element based simulation // J. of Natural Gas Science and Engineering. – 2022. – Vol. 106. – P. 104742. – URL: https://doi.org/10.1016/j.jngse.2022.104742

16. A novel upscaling procedure for characterizing heterogeneous shale porosity from nanometer-to millimetre-scale in 3D / L. Ma, P.J. Dowey, E. Rutter [et al.] // Energy. – 2019. – Vol. 181. – P. 1285–1297. – URL: https://doi.org/10.1016/j.energy.2019.06.011

17. Multiscale pore structure and its effect on gas transport in organic-rich shale / T. Wu, X. Li, J. Zhao, D. Zhang // Water Resources Research. – 2017. – Vol. 53(7). – P. 5438–5450. – URL: https://doi.org/10.1002/2017WR020780

18. Chalmers G.R.L., Ross D.J.K., Bustin R.M. Geological controls on matrix permeability of Devonian gas shales in the Horn River and Liard basins, northeastern British Columbia, Canada // International J. of Coal Geology. – 2012. – Vol. 103. – P. 120–131. – URL: https://doi.org/10.1016/j.coal.2012.05.006

19. Development of organic porosity in the Woodford shale with increasing thermal maturity / M.E. Curtis, B.J. Cardott, C.H. Sondergeld, C.S. Rai // International J. of Coal Geology. – 2012. – Vol. 103 – P. 26–31. – URL: https://doi.org/10.1016/j.coal.2012.08.004